Anisotropic Magnetotransport around the $\nu = 1$ Bilayer Quantum Hall State

Kazuki Iwata^a, Masayuki Morino^a, Michiro Suzuki^a, Akira Fukuda^b, Anju Sawada^b, Zyun F. Ezawa^a, Norio Kumada^c, and Yoshiro Hirayama^c

^aGraduate School of Science, Tohoku University, Aramaki-Aoba, Aoba, Sendai, Miyagi 980-8578, Japan
^bResearch Center for Low Temperature and Materials Sciences, Kitashirakawa Oiwakecho, Sakyo, Kyoto 606-8502, Japan

 $^c\mathrm{NTT}$ Basic Research Laboratories, NTT Corporations 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

Anisotropic magnetotransport that depends on the angle between an in-plane magnetic field and a current in a bilayer quantum Hall system was investigated. Measurements of longitudinal resistance around the bilayer $\nu = 1$ quantum Hall state show highly anisotropic transport behaviors. This anisotropy does not appear in a monolayer system and becomes remarkable around the critical tilting angle associated with the commensurate-incommensurate phase transition. This result implies that an unidirectional state emerges around the transition.