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Phase Diagram of Interacting Composite Fermions in the Bilayer � � 2=3 Quantum Hall Effect

N. Kumada, D. Terasawa, Y. Shimoda, H. Azuhata, A. Sawada, and Z. F. Ezawa
Department of Physics, Tohoku University, Sendai 980-8578, Japan

K. Muraki, T. Saku, and Y. Hirayama
NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

(Received 13 December 2001; published 23 August 2002)
116802-1
We study the phase diagram of composite fermions (CFs) in the presence of spin and pseudospin
degrees of freedom in the bilayer � � 2=3 quantum Hall (QH) state. Activation studies elucidate the
existence of three different QH states with two different types of hysteresis in the magnetotransport. While
a noninteracting CF model provides a qualitative account of the phase diagram, the observed renorm-
alization of tunneling gap and a non-QH state at high densities are not explained in the noninteracting CF
model, and are suggested to be manifestations of interactions between CFs.
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presence of both spin and layer degrees of freedom in the total magnetic field. We label each CF energy level as
The fractional quantum Hall effect (FQHE) is intuitively
understood based on the composite fermion (CF) model
[1], where basic particles are CFs obtained by attaching an
even number of flux quanta to electrons. At the filling
factor � � 1=2, the attached flux exactly cancels the ap-
plied magnetic field, giving rise to a Fermi liquid state of
CFs [2]. As the field deviates from � � 1=2, CFs are
subjected to an effective magnetic field B� � B� B1=2,
by which the series of FQHE at � � p=�2p� 1� can be
interpreted as the integer QH effect (IQHE) of CFs at
�CF � p. The noninteracting CF model has been success-
fully used to interpret the activation gaps [3] and spin-
polarization transitions [4,5] in various FQHE states, and
the cyclotron resonance of CFs [6]. Consequently, the
interactions between CFs, which underlie these phenom-
ena and the existence of CF per se, are incorporated in the
effective mass of CFs defined for each context [5,7] and do
not manifest themselves.

In bilayer systems, the interplay of interlayer and intra-
layer Coulomb interactions has provided a vast field of
many-body phenomena which have no counterpart in in-
dividual two-dimensional systems. This is best illustrated
in the bilayer QH state at the total filling factor � � 1 [8],
where each layer has a fractional filling of 1/2. The spec-
tacular transition from a strongly correlated incompres-
sible state at lower densities to an uncorrelated or weakly
correlated compressible state at higher densities cannot be
fully understood within one picture. The system is best
described as an easy-plane pseudospin ferromagnet for
strong interlayer correlations, while in the other limit of
strong intralayer correlations it is better described as two
Fermi liquids of CFs weakly interacting with each other.
Hence, the FQHE in a bilayer system, in which the inter-
play of interlayer and intralayer interactions between CFs
determines the ground state, is a touchstone for noninter-
acting CF model, and could be a laboratory for studying the
underlying interactions.

In this Letter, we study the phase diagram of CFs in the
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bilayer � � 2=3 state. The interlayer/intralayer interac-
tions and tunneling energy are controlled through the total
electron density nt � nf � nb and the density difference
between two layers 	 � �nf � nb�=nt [9], where nf (nb) is
the electron density in the front (back) layer. Activation
energy measurements elucidate the existence of three dif-
ferent QH states. We also find two types of hysteresis in the
magnetoresistance, one of which is specific to bilayer
systems. While the noninteracting CF model provides a
qualitative account of the phase diagram, the observed
renormalization of tunneling gap, �SAS, cannot be ex-
plained in the noninteracting model, and is a signature of
interactions between CFs.

Our sample consists of two 200-Å-thick GaAs quantum
wells separated by a 31-Å-thickAl0:33Ga0:67As barrier with
�SAS � 10:9 K. The electron density in each layer is con-
trolled by the front and back gate voltages. The low
temperature mobility is 2� 106 cm2=Vs with nt � 2�
1011 cm�2. The sample is mounted on a goniometer with
a superconducting stepper motor in a dilution refrigerator
operating at 50 mK. Magnetoresistance measurements are
performed using a standard low-frequency ac lock-in tech-
nique with a magnetic-field sweep rate of 0:06 T=min and
a current of 20 nA.

Figure 1 shows the noninteracting CF energy levels in a
bilayer system. With the pseudospin language, the energy
gap between the bonding (b) and antibonding (a) states,
�BAB � �SAS=�1� 	2�1=2, is treated as a pseudo-Zeeman
energy, which equals �SAS at 	 � 0 and increases with
applying a bias voltage [10]. The CF-cyclotron energy,
which is determined by the perpendicular magnetic field
B?, can be written as �cy � C�	�e2=4��l�B /

�������

B?

p
[2],

where C�	� is a dimensionless coefficient, � is the dielec-
tric constant, and l�B is the magnetic length in B�. We allow
C�	� to be a function of 	 to include the finite width of
the wave functions. The levels are further split by the
Zeeman energy, �Z � g��BBtot, where g� is the gyromag-
netic ratio, �B is the Bohr magneton, and Btot is the
 2002 The American Physical Society 116802-1
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FIG. 1. Lower-lying energy levels of noninteracting CFs sche-
matically shown as a function of the magnetic field. While
pseudo-Zeeman energy �BAB is constant, the Zeeman �Z /
Btot and CF-cyclotron �cy /

�������

B?

p
energies depend on the mag-

netic field. At � � 2=3, the lowest two levels are filled (thick
curves), and there are three possible QH ground states. Here,
SU-PP means the spin-unpolarized pseudospin-polarized state.
(0; b; " ) represents the NCF � 0 Landau level in the bonding
state with up-spin.
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(NCF; ps; s), where NCF �� 0; 1�, ps �� b; a� and s ��"; #�
are the CF-Landau orbit, pseudospin, and spin indices.

In Fig. 2, we show the evolution of the � � 2=3 state
with nt in a perpendicular field for two limiting cases, i.e.,
the balanced-density point (	 � 0) and the monolayer
point (	 � 1). For both 	 � 0 and 1, the QH state is
well developed at high densities, where the magnetoresist-
ance Rxx falls to zero. At 	 � 0, the Rxx minimum gets
weaker with decreasing nt, and collapses at nt � 0:8�
1011 cm�2, followed by a reappearance at nt � 0:6�
1011 cm�2 [11]. At 	 � 1, a significantly different behav-
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FIG. 2. Rxx at the balanced-density point (	 � 0) and the
monolayer point (	 � 1) for several total densities, plotted as
a function of 1=� � eB?=hnt. Each trace is vertically offset by
5 k . Hysteresis between the upward (solid trace) and down-
ward (dashed trace) field sweeps is seen at 	 � 1.
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ior is observed: Rxx shows a hysteresis between upward
and downward magnetic-field sweeps in a wide density
range, 0:8 � nt � 1:2� 1011 cm�2, until it disappears for
nt � 0:6� 1011 cm�2 [12]. We refer to this hysteresis as
type G (G stands for the ground state, as we explain later).

We have repeated similar measurements for 0 � 	 � 1
and 0:5 � nt � 1:8� 10

11 cm�2, and made a phase dia-
gram (Fig. 3). Four QH areas, labeled I, II, III, and IV, are
clearly recognized. The diagram reveals that the high-
density phase at 	 � 0 (I) exists only at 	 � 0, while
the low-density phase at 	 � 0 (II) evolves continuously
to the high-density phase at 	 � 1 (III). It is worth noting
that, between these regions, there is a non-QH region,
which spreads over a wide range of nt and 	. Type-G
hysteresis, observed at 	 � 1 between III and IV, persists
for 	< 1, shifting toward lower nt with decreasing 	. We
also find another type of hysteresis, in a region between II
and III (small white squares). We call this type E (E stands
for excitation levels) and discuss it later.

The four QH regions in the phase diagram can be
identified with the CF energy level diagram shown in
Fig. 1. In area I, where nt is high and 	 is small, the large
�Z and small �BAB lead to the spin-polarized pseudospin-
unpolarized (SP-PU) state. In area IV, where nt is small and
	 is large, the small �Z and large �BAB result in the spin-
unpolarized pseudospin-polarized (SU-PP) state. The spin-
polarized pseudospin-polarized (SP-PP) state appears in
the intermediate areas (II and III).

The above assignments are confirmed by activation en-
ergy measurements with the sample tilted in a magnetic
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FIG. 3. Phase diagram for � � 2=3. The horizontal and verti-
cal axes are the normalized density difference between two
layers, 	, and the total electron density, nt, respectively. The
black and white areas represent QH and non-QH states, respec-
tively. Type-G hysteresis (Fig. 2) was observed in the hatched
area. The small white square in black region indicates the
occurrence of a different type of hysteresis (Fig. 5).
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field while keeping B? fixed. Figure 4 shows the activation
energy, �, in the four QH areas as a function of the total
magnetic field Btot � �B2? � B2

k
�1=2, where Bk is the in-

plane field. In areas I and III, � initially increases with a
slope @�=@Btot � g��B, indicating that the gap is due to
spin-reversed excitations from a spin-polarized ground
state, consistent with SP-PU (I) and SP-PP (III). Like-
wise, the spin-polarization transition [14,15] in area IV,
seen as the turnover of � at Btot � 5 T, shows that the
ground state is spin-unpolarized for Bk � 0, consistent
with SU-PP. In area II, an addition of Btot as small as
0.1 T results in a collapse of the gap. This shows that the
gap is associated with �BAB, which decreases as �BAB /
expf��Bkd=2B?l

�
B�
2g [16] (d is the layer separation)

for 	 � 0, consistent with the state being pseudospin-
polarized (SP-PP).

Now we examine quantitatively the validity of the non-
interacting CF model in bilayer systems. The transition
between SP-PP (III) and SU-PP (IV), which is associated
with the spin and CF-Landau orbit degrees of freedom,
occurs when �Z and �cy become equal [4],

g��BBtot � C�	�e2=4��l�B: (1)

The observed transition point of nt � 0:95� 1011 cm�2

for 	 � 1 yields C�1� � 0:026. We arrive at a similar
value, C�1� � 0:027, from the tilted-field data for area IV
FIG. 4. The activation energy � as a function of Btot at � �
2=3 in the four QH areas. � is determined from the temperature
dependence, Rxx / exp���=2T� [13]. On the top axis, we show
the tilt angle �. The leftmost point corresponds to � � 0 where
Btot � B?. The slope of the lines included in I, III, and IV
correspond to �g��BBtot. In the insets, we showed the ground
state of the QH states (thick line) and excitation levels (thin line).
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in Fig. 4. As 	 is decreased, we expect C�	� to decrease
because electrons tend to extend over both layers, making
Coulomb interactions weaker. It follows from Eq. (1) that
B? / C�	�2 at � � 0. Indeed, we get C�0:6� � 0:019 at
the lowest nt � 0:5� 1011 cm�2. Hence, nt at the transi-
tion decreases as nt � �eB?=h / C�	�2 [17]. This ex-
plains why the boundary between SP-PP (III) and SU-PP
(IV) shifts toward lower nt with decreasing 	.

We then proceed to the pseudospin transition between
SP-PP (II) and SP-PU (I) at 	 � 0. The noninteracting
model predicts that it occurs when �cy equals �BAB,

�BAB � C�	�e2=4��l�B: (2)

Equation (2) together with the observed transition point of
nt � 0:8� 1011 cm�2 and �SAS � 10:9 K gives C�	 �
0� � 0:17, which is at least 8.9 times larger than the one
estimated from Eq. (1). This inconsistency arises partly
because the exchange interaction between CFs enhances
the Zeeman energy in Eq. (1) [18]. This results in the
underestimation of the prefactor C when one uses the bare
Zeeman energy as usually done [4,5]. However, the ex-
change enhancement of the Zeeman energy reported in
Ref. [18] is only by a factor of 2.5, so there still remains
inconsistency by a factor of �4. This means that in bilayer
systems the interplay of interlayer/intralayer correlations
cannot be fully accommodated in a single effective mass of
noninteracting CFs and, within the noninteracting CF
model, �SAS must be renormalized.

Since the SP-PP and SP-PU states have the same spin
polarizations and similar density profiles at 	 � 0, the
observed renormalization of �SAS cannot be explained in
a simple mean-field picture, which predicts the two states
to have similar exchange energies [19]. This, in turn,
indicates that the exchange energy in the fractional regime
strongly depends on the details of the electronic states. Our
results show that the SP-PU state, in which electrons in
each layer configure the monolayer � � 1=3 QH state, has
a lower exchange energy than the SP-PP state, making
�SAS effectively smaller.

A similar argument has been used to account for the
reduction of�SAS and the collapse of the bilayer � � 1QH
state at high densities [20,21]. The mixing of antibonding
states into the many-body ground state allows electrons in
the same layer to be more strongly correlated than those in
different layers [22,23]. At high densities, where intralayer
interactions become dominant, electrons choose to occupy
the antibonding state at the cost of tunneling and interlayer
correlation energies. While this leads to the softening of
charge density excitations and collapse of the QH effect for
� � 1, the same mechanism leads to the transition from the
SP-PP to SP-PU state for � � 2=3.

The same scenario can be applied to the non-QH state
spreading for 	 > 0 at high nt. Note that the SP-PU state is
pseudospin-unpolarized and can exist only at the balanced
point (	 � 0). For unbalanced points (	 > 0), quasipar-
ticles with opposite charges are introduced in different
116802-3
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FIG. 5. The evolution of Rxx from areas II to III. At 	 � 0:5
and 0.6, type-E hysteresis is seen.
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layers, destroying the SP-PU state. Since the non-QH state
also has antibonding states occupied, it is expected to
have higher intralayer correlations than the SP-PP state.
Therefore, the non-QH state persists until the tunneling
energy �BAB overcomes the intralayer correlation for even
larger 	 and the SP-PP state becomes lower in energy.

Finally, we discuss the two types of hysteresis. Type G,
which is caused by the domain formation at the coexistence
of ground states with different spin polarizations [24,25]
and the resultant nuclear polarization [26–28], is already
known in monolayer systems. Type E is distinguished by
the observation that Rxx for both upward and downward
field sweeps takes a well-developed minimum at � � 2=3
(Fig. 5), meaning that there is no degeneracy in the � �
2=3 ground state. This observation, combined with the fact
that type G vanishes already at nt � 1:3� 1011 cm�2 for
	 � 1 and moves further away toward lower B for smaller
	 (Fig. 3), clearly indicates that the hysteresis in Fig. 5 has
a different origin. As the data in Fig. 4 show, the excitation
level of the SP-PP state changes from (0; b; # ) in area III
to (0; a; " ) in area II due to the reduction in �BAB
with decreasing 	. Hence, in the intermediate region,
these excitation levels become degenerate, allowing for
two types of quasiparticles in the flanks of � � 2=3.
Hysteresis can arise because the energies of these quasi-
particles, having opposite spins, depend on the Zeeman
energy and hence the hyperfine field from the nuclei. At
� � 2=3, the SP-PP state, having no competing ground
state, develops independent of the hyperfine field. Our
observations indicate that the FQHE ground state degen-
eracy is not a prerequisite for hysteretic behavior.
Rather, coincidence of any CF levels with opposite spin
at the Fermi energy can open the spin-flip channel with
nuclear spins.

In summary, we have studied the phase diagram of
bilayer � � 2=3 and identified three different QH ground
states and two types of hysteresis. While the noninteracting
CF model provides a qualitative account of the phase
diagram, the observed renormalization of tunneling gap,
�SAS, indicates that the exchange interactions between CFs
are nontrivial.
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