Magnetoresistance Peak in the $\nu = 2$ Bilayer Quantum Hall State under Tilted Magnetic Field

Akira Fukudaa, Shinsuke Kozumib, Daiju Terasawab, Anju Sawadaa, Zyun F. Ezawab, Norio Kumadac, and Yoshiro Hirayamac

aResearch Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8502, Japan
bGraduate School of Science, Department of physics, Tohoku University, Sendai 980-8578, Japan
cNTT Basic Research Laboratories, NTT Corporations, 3-1 Morinosato-Wakamiya, Atsugi 243-0198, Japan

The bilayer quantum Hall (QH) state is a fascinating system which is constructed by adding the layer degree of freedom, which is represented as "pseudospin", to the ordinal monolayer QH system. As a result of the combination of both spins and pseudospins, the $\nu = 2$ bilayer QH state has revealed a variety of quantum phases. Recently the magnetoresistance peak was found in the $\nu = 1$ bilayer QH state around the commensurate-incommensurate (C-IC) transition point. In this work we have carried out similar quantum magnetotransport experiments in the $\nu = 2$ bilayer QH state with an in-plane magnetic field applied. We have carefully examined the behavior of the magnetoresistance for a sweep of the magnetic field at a fixed total density. Although no anomalous behavior in magnetoresistance was found below the tilting angle $\theta_C = 61^\circ$, a peak has been observed above θ_C. This structure resembles the peak reported in the $\nu = 1$ QH state, and we expect it to be a signal of a phase transition in the $\nu = 2$ QH state. We analyze this anomaly whether it results from the level crossing or the C-IC transition.

Sorting category: Db Conducting electrons in condensed matter

Keywords: quantum Hall effect, bilayer system

LT1121