Anisotropic Behavior of Hysterestic Transport Phenomena in the $\nu = 2/3$ Quantum Hall State in the Tilted Magnetc Field

<u>Kazuki Iwata</u>^a, Masayuki Morino^a, Akira Fukuda^b, Anju Sawada^b, Zyun F. Ezawa^a, Michiro Suzuki^a, Norio Kumada^c, and Yoshiro Hirayama^c

^aGraduate School of Science, Department of physics, Tohoku University, Sendai 980-8578, Japan ^bResearch Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8502, Japan ^cNTT Basic Research Laboratories, NTT Corporations, 3-1 Morinosato-Wakamiya, Atsugi 243-0198, Japan

In fractional quantum Hall effects (FQHEs), the spin degree of freedom opens up a rich variety of quantum phenomena. For instance, in FQHE at the Landau level filling factor $\nu = 2/3$, a phase transition between a spin-polarized and -unpolarized states occur. Around the transition, a domain structure accompanied by a hysteresis is formed. In this work, we study the domain structure in tilted magnetic fields B_{\parallel} , and elusidete that it has an anisotropic structure against the direction of B_{\parallel} . We used two-axis goniometer, by which both the strength of B_{\parallel} and an angle ϕ between a current I and B_{\parallel} are controlled. We measured magnetoresistance around the phase transition at $\nu = 2/3$ by changing ϕ . When I is orthogonal to B_{\parallel} ($\phi = 90^{\circ}$), a strong hysteresis emerges. As ϕ decreases, the hysteresis becomes small and almost disappears when I is parallel to B_{\parallel} ($\phi = 0^{\circ}$). We suggest that domain walls align along B_{\parallel} , and the number of electrons passing across the domain wall increases with ϕ . We also investigated the dependence of the current and the sweep rate of a magnetic field of the anisotropy.

Sorting category: Db Conducting electrons in condensed matter

Keywords: two dimensional electron system, fractional quantum Hall effect, domain wall, hysteresis