目 次

第3号 2004年2月

研究ノ	— I	-
-----	-----	---

重い電子系超伝導 UNi ₂ Al ₃ のスピン三重項超伝導 ・・・・石田憲二, 北岡良雄, 佐藤 憲昭・・ 3 新しい幾何学的スピンフラストレーション系の創製 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
磁気冷凍と巨大磁気熱量効果 ・・・・・・・・・・・・・・・・・・・・・・和田 裕文・・21
センター紹介 共同利用実験室・実験装置の紹介・・・・・・・・・・・・・・・・・・・・・・・・・・・・・28
技術ノート 一軸性ひずみ下での低温物性測定 ・・・・・・・・・・・・・・・・・・・・・ 前里 光彦・・30
サロン フロリダ・タラハシ・米国国立高磁場研究所滞在記・・・・・・・・・・・・・・・・・・・・・・36
センタ - セミナ - 報告・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・38
運営委員会より
保安講習会報告・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
桂キャンパスの液体窒素供給システム・・・・・・・・・・・・・・・・・・・・・・・・・47
宇治キャンパス公開・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・48
寒剤供給状況 吉田キャンパス, 宇治キャンパス・・・・・・・・・・・・・・49
投稿案内・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・51
編集後記・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

Low Temperature and Materials Sciences (Kyoto University)

Number 3, February 2004

Table of Contents

Research Reports	
Spin-Triplet Superconductivity in Heavy-Fermion UNi2Al3 K. Ishida, Y. Kitaoka, N. K. Sato	3
New Generation of Geometrically Frustrated Spin Systems Hiroshi Kageyama	12
Magnetic Refrigeration and Giant Magnetocaloric Effect Hirofumi Wada	21
Featuring Article	
User Laboratories and Apparatus of LTM Center	28
Technical Note	
The Low Temperature Physical Property Measurement under the Uniaxial StrainMitsuhiko Maesato-	30
Salon	
Stay at National High Magnetic Field Laboratory in Tallahassee, Florida Satoru Nakatsuji-	36
LTM Center Seminars	38
From Organizing Committee	
Safety Class for Cryogenic Liquids and Hight-Pressure Gases	46
Liquid-Nitrogen Supply System at Katsura Campus	47
Uji Open Campus	48
Amounts of Cryogens Consumption: Yoshida Campus and Uji Campus	49
Call for Manuscripts	51
Editors' Note	52

研究ノート

重い電子系超伝導 UNi₂Al₃のスピン三重項超伝導

Spin-Triplet Superconductivity in Heavy-Fermion UNi₂Al₃

石田憲二¹,北岡良雄²,佐藤憲昭³ ¹京都大学大学院理学研究科,²大阪大学大学院基礎工学研究科、 ³名古屋大学大学院理学研究科

K. Ishida¹, Y. Kitaoka², N. K. Sato³,

¹Graduate School of Science, Kyoto University, ²Graduate School of Engineering Science, Osaka University, ³Graduate School of Science Nagoya University.

1. はじめに

超伝導は物質が低温で示すもっとも安定な状態の一つである. 超伝導発現機構を理論的に解明した BCS 理論は, 超伝導転移温度でフェルミ粒子である 2 つの電子が電子 - 格子相互作用によりボーズ 粒子として扱える対を作り, それらがボーズ-アインシュタイン凝縮を起こすというものである. BCS 理論では超伝導対はスピン 1 重項状態 (2 つの電子のスピンが反平行:S=0)であり, その広がりは s 波 の対称性を持つものを考えていた[1]. ところが超伝導(対)の引力をもっと一般的に電子間の相互作用 に求めるならば, 超伝導対も高いエネルギー状態を持った p や d 波の対称性も持ちうることが期待さ れる. 驚くべきことにこのような可能性は'61 年に P.W.Anderson and P.Morel によって[2], '65 年に W.Kohn and J.M.Luttinger によって[3]既に調べられていた. しかし実際にこのような超伝導対が確認さ れたのは, '72 年の液体 ³He のp 波対による超流動の発見に始まり[4], '79 年の重い電子系*超伝導体[5], '86年の高温超伝導体の発見[6]になってである. そして高温超伝導体が広く認知されるように って, 異方的超伝導と呼ばれる s 波の対称性以外の超伝導対を持つ超伝導体が広く認知されるように なり, 超伝導研究に新しい広がりを見せている. 従来まで知られている電子 - 格子相互作用に代わる

超伝導対の引力の同定や異方的超伝導特有の新現 象探索を目的とする研究は、現在固体物理の中で 活発に研究がなされている分野のひとつとなって いる.しかしこのような状況でも、電子系でのス ピン三重項(2つの電子対が平行:*S*=1)超伝導は 永らく発見されていなかった.最初の三重項超伝 導体は'89年に重い電子系超伝導体 UPt₃において 指摘された[7].この物質では、超伝導転移に2段 の異常や超伝導状態にA,B,C相と呼ばれる多重相 を持つことから、超伝導対が超流動³He 同様内部

自由度を持つものと考えられるからである. その後'94年に前野 et al.によって発見されたルテニウ

図 1: UNi₂Al₃の結晶構造. UPd₂Al₃ではNiサイト がPd に置き換わっている.

ム酸化物超伝導体 Sr₂RuO₄ が[8]様々な実験からスピン三重項超伝導体と同定されるに至っては[9-11], 三重項超伝導体も理論上存在する興味ある超伝導状態という領域を越え,現実に存在する超伝導体と 認識され実験家の格好の研究対象となっている.

スピン三重項超伝導体を理解するうえで、その超伝導状態を詳細に調べていくことも重要な課題で あるが、それと同時に新たに三重項超伝導体を発見(同定)することも、三重項超伝導の共通性、普遍性 を知ることにつながる重要な課題である。筆者(K.I.)は残念ながら物質開発の方にはお役は立てないが、 私が専門としている核磁気共鳴法(NMR)は超伝導状態の同定には大変有効な手法である。事実、 Hebel-Slichterによってなされた超伝導状態でのAIの緩和率測定は、BCS 理論の検証に多大な貢献を果 たした[12].

最近, 我々は重い電子系超伝導体 UNi₂Al₃ がスピン三重項超伝導体と考えられることを, 超伝導状態のナイトシフト測定から示した[13]. これはUNi₂Al₃が, 前述のUPt₃, Sr₂RuO₄に続く3例目のスピン 三重項超伝導体であることを示す結果である.この実験結果を中心に, 超伝導対のスピン状態を知る 有効な手段である超伝導状態のナイトシフト測定についても紹介する.その後同じ結晶構造の UNi₂Al₃とUPd₂Al₃との実験結果の比較から, 超伝導の対称性と常伝導状態の磁気励起との関係につい て議論したい.

2. UM₂AI₃ (M = Pd, Ni)の超伝導

'91 年ドイツの Geibel *et al*.によって発見された UM₂Al₃ (*M*=Pd and Ni)は磁気秩序と超伝導が共存する興味ある物 質である[14,15]. 図 1 に見るように,結晶構造は UPt₃ と同 じく六方晶系に属しウラン(U)原子と*M*原子(*M*=Pd and Ni) で構成される層とアルミニウム原子(Al)だけで構成される 層とが交互に *c* 軸方向に積み重なっている. UPd₂Al₃ は T_N = 14.5 K 以下で反強磁性にオーダーし,その後 $T_c = 2$ K で超 伝導を示す.磁気構造は U-Pd 面内でウランの磁気モーメ ント(~0.85 μ_B)が強磁性的に揃い, c 軸方向には反平行(反 強磁性的)に配列している(ordering wave vector Q = (0,0,1/2))[16]. これに対し, UNi₂Al₃ は T_N = 4.6 K で, ab 面内 にスピン密度波(SDW)的な磁気秩序を示し(Q = (1/2± τ ,0,1/2), τ =0.11)[17], T_c ~1 K で超伝導に転移する.

図 2: UPd₂Al₃ の比熱の結果. T_N=14.5K に反強磁性転移, T_c=2K に超伝導転移に 伴う明確なとびが観測されている. 論 文[18]より転写.

U 系重い電子物質においては、磁気秩序、超伝導に重要 な寄与を果たしているのは、Uの2~3個の5f電子(5f^{2~3})であ

る. 5f 電子は高温では局在的な性質を示すが、``近藤温度''と呼ばれる特徴的な温度以下で遍歴的な状態に crossover していき、低温で電子相関の大きな``**重い遍歴電子**''として振舞う. 両物質の超伝導は、この重い電子による超伝導である. それは超伝導転移での``**大きな比熱のとび**''からも見て取れる(図2参照).

良質の単結晶試料が比較的容易に作成される理由から, UPd₂Al₃ の超伝導状態については詳細な研究がなされている. その結果 UPd₂Al₃ は線状にギャップがゼロとなる(ラインノードの)超伝導ギャップをもつ, スピン1重項 *d* 波超伝導体と結論されている[19]. これに対し UNi₂Al₃の超伝導状態については, 単結晶の作成が難しいこともあり詳細な研究はなされていないが, 超伝導対称性が UPd₂Al₃ と

は異なる可能性は上部臨界磁場(H_{c2})の振舞いから指摘されて いた[20]. UPd₂Al₃では H_{c2} は等方的で、スピン1重項超伝導か ら期待される振舞いであるが、UNi₂Al₃の H_{c2} は非常に異方的 で、1重項超伝導対の常磁性効果から期待される値よりも小 さく、スピン3重項超伝導の可能性が指摘された[21]. UNi₂Al₃において超伝導対の同定に重要なナイトシフトの測 定が待たれていた.

3.スピン三重項を同定するには?

超伝導対の波動関数の性質を知るには、電子対の軌道とス ピンの状態を知る必要がある.対の軌道状態は超伝導ギャッ プのノード(節)の形状に反映される. 核磁気共鳴(NMR)実験 は、そのどちらの性質も知ることが出来る有効な手段である。 つまり超伝導ギャップのノードの形状は、核スピン-格子緩 和率(1/T1)の測定から、対のスピン状態は超伝導状態のナイ トシフトの測定から知ることが出来る. ナイトシフトとは電 子が核の位置に作る磁場により共鳴磁場がシフトする現象で あり、原子核をプローブとした局所的なスピン磁化率測定に 相当する.通常の磁化測定では、超伝導状態のスピン磁化率 は超伝導反磁性の寄与のために遮蔽されるが、 ナイトシフト の測定では電子が核につくる磁場が大きいため超伝導反磁性 の効果に打ち勝って超伝導状態のスピン磁化率の振舞いを知 ることができる. d電子やf電子を含む物質では、スピン磁化 率のほかにヴァンブレック磁化率が存在する. ヴァンブレッ ク磁化率は、超伝導エネルギーギャップより高いエネルギー の状態が磁場によって混成することから生じるので通常 T. 以下で変化しない.s波やd波の超伝導体では、秩序変数の軌 道部分は偶パリティなのでスピン部分はスピン1重項となる. それゆえ、T。以下では超伝導ギャップを超えて熱的に励起し た準粒子がスピン磁化率
γ_s(T)に寄与し、超伝導状態の
γ_s(T)は

$$\chi_{s}(T) = -4\mu_{B}^{2} \int_{\Delta}^{\infty} Ns(E) \left(\frac{df}{d\varepsilon_{k}}\right) dE$$

となる. s 波の場合 χ_s は T_c 以下指数関数的に減少する. (図 3 参照) 一方, d 波の場合は低温で $N_s(E)$ ~ E なので χ_s は温度 T に比例して減少する. このような温度変化は金属 Al(s 波) や 銅酸化物高温超伝導体 (d 波) で観測されている[22]. 我々に よる s 波超伝導のナイトシフト測定例として, 最近発見され たパイロクロア物質の超伝導体 $Cd_2Re_2O_7$ の実験結果を示す. T_c 以下 Cd-NMR 共鳴線はナイトシフト(スピン磁化率)が減少

図 3:スピン一重項と三重項超伝導体 のナイトシフトの温度変化の概念図. *K_s, K_{VV}*はそれぞれナイトシフトのスピ ン成分と軌道成分

図 4: s 波超伝導の実験例. パイロクロ ア超伝導 Cd₂Re₂O₇ における(a)*T*_c 以上 (1 K)と以下(70mK)の Cd-NMR スペク トルと(b) ナイトシフトの温度変化.

する方向にシフトしている.(図4(a)参照)図4(b)に超伝導状態のナイトシフトの温度変化を示す.常伝 導状態に存在したスピン磁化率は低温で消失していることがわかる.

一方, p 波の場合は, 秩序変数の軌道部分は奇パリティなのでスピン部分はスピン三重項状態である. 強相関電子系で起こるスピン三重項超伝導の場合は, 空間的に離れた電子対で形成されるので秩序変 数の軌道部分が等方的になる対状態は排除でき異方的なスピン3重項対が実現する. 磁場を印加した 場合磁場方向に平行スピンが誘起され, 平行スピン対間に($|\uparrow\uparrow\rangle$ と $|\downarrow\downarrow\rangle$ の状態に)相関がない場合, 超伝導状態の χ_s は常伝導状態と同じ値をもつ. (図3参照)また強相関電子系では, 秩序変数のスピン自 由度はスピン軌道相互作用の効果で結晶にロックされると予想される. この効果が大きい場合, スピ ンの縮退が自発的に解け, スピンと平行方向の χ_s は不変であるが, スピンと垂直な方向の χ_s は減少す る. このように, ナイトシフトの測定から超伝導対の偶奇性, スピン3重項対でのスピン軌道相互作 用の効果についての情報が得られる.

次に実験的な話であるが、実際の超伝導状態でのナイトシフトの測定は、外部磁場 H_0 が下部臨界磁場と上部臨界磁場の中間にあるいわゆる渦糸状態で行うことになる.強相関電子系の超伝導体はすべて第2種超伝導体で、中でも磁束侵入長、 λ が大きい.従って、NMR を行うための静磁場、高周波磁場の侵入は大きい. $H_0 = 10$ kOe で侵入する磁束の平均間隔, $d \sim 500$ Å、磁束侵入長、 $\lambda \sim 2000$ Å、コヒーレンス長、 $\xi_s = 2000$ Å であるので、 $\xi_s < d < \lambda$ の関係にある.磁束のピン止め効果が極端に強くなければ、磁場(H_0)に垂直な高周波磁場(H_1)によって磁束が振動し NMR 信号を観測することが出来る.磁束の近傍、 ξ 程度ではエネルギーギャップが殆どゼロの常伝導状態にあるが、超伝導のコヒーレンスが存在する領域との体積比は、(ξ / d)² «1 であるので NMR の信号は、超伝導状態にあり且つ外部磁場と殆ど変わらない磁場が侵入している原子核からの信号が大部分を占める.したがって実際の測定では、外部磁場中でも超伝導の性質を反映した実験結果を知ることが出来る.

4.UNi₂AI₃の超伝導状態のナイトシフト測定 [13]

良質な UNi₂Al₃ 単結晶を用いた超伝導状態のナイ トシフトの測定は最近になって行われた[13]. これ は超伝導を示す単結晶の作成が難しかったからであ る. 測定は、名大理の佐藤 *et al.*により作成された単 結晶試料を用いた[21]. 図5(c)に、磁場を ab 面内に かけた時の超伝導状態のナイトシフトを示す. 測定 は外部磁場 H ~ 2.5 kOe, および~ 5 kOe で行われ、ナ イトシフト測定条件での超伝導転移は交流磁化率と $1/T_1$ の測定から確かめられた. ナイトシフトの値は NMR 共鳴線のシフトから見積もられるが、図6に示 すように H ~ 2.5 kOe と~ 5 kOe の測定で T_c の上下で 共鳴線のシフトは実験誤差内で観測されなかった.

同じ結晶構造を持つ UPd₂Al₃ では, 等方的な~ 0.13 %のナイトシフトの減少が観測され, スピン1 重項を同定する決め手となった[23]. このシフトの 減少分は, 電子比熱係数の実験値 (γ_n=150 mJ/mole K²)に相当するスピン磁化率の寄与と同等の値であ

図 5: UNi₂Al₃の~2.5kOe での(a)超伝導反磁性磁 化率, (b)1/*T*₁*T*(*H*_{c2}以上の 11.2 kOe のデータも示 す.)(c)ナイトシフトの温度依存性.

る. つまりフェルミ液体論に基づけば、 $\gamma_n = 150 \text{ mJ} / \text{mole } K^2 の値からスピン磁化$ 率は $\chi_s \sim 1.6 \times 10^{-3}$ (emu / mol) と計算さ れる. またナイトシフトと磁化率は, $K_s =$ $(H_{thf} / N_A \mu_B) \chi_s$ の関係があり、ここで H_{thf}は、トランスファー超微細結合定数、 N_Aはアボガドロ数である. 実験で得られ た²⁷Alの H_{thf} = 3.5 kOe / μ_B を用いると K_s は0.13%と評価されナイトシフトの減少 分とよく一致する. ここでウイルソン比 (= χ_s / γ)~1を仮定した. UNi₂Al₃に同様の 議論をあてはめると、 T_{c} 直上の $\gamma_{n} = 140$ mJ / mole K²とH_{thf} = 4.2 kOe / μ_B の実験値 から, K_s~0.16%と見積もられる.図6に K、~ 0.16%に相当する共鳴線のシフトを 点線で示す.明らかに見積もられたナイ

図 6: UNi₂Al₃での Al-NMR スペクトルの温度変化(a) ~ 2.5 kOe, (b) ~ 4.9 kOe. メインの図の点線で示したスペクトル は、一重項超伝導状態で期待されるスペクトルのシフト (本文参照)

トシフトの減少は見られていない. ちなみに測定に用いた単結晶試料は UPd₂Al₃ と同程度の残留抵抗 を持ち, 試料はクリーンリミットにある. したがって両試料に見られるナイトシフトの振舞いの違い を不純物や格子欠陥等の影響と考えるのも無理がある. 実験で観測されたシフトの振舞いの違いは超 伝導対の対称性の違いと考えるのがもっとも自然な解釈のように思われる.

磁場を面に垂直(c軸方向)にかけた時のナイトシフトの測定も行ったが,*T*_N以下内部磁場の影響で共鳴線が非常に広くなるために,精度よい実験は不可能であった. Al サイトから見た,非常に異方的な磁気秩序モーメントの影響も今後明らかにすべき課題である.現段階では,ab 面内の磁場印加に対し 超伝導状態のスピン帯磁率が全く変化しない結果から,UNi₂Al₃がスピン三重項超伝導体で対のスピン が ab 面内に存在すると考えられる.

超伝導ギャップの性質は、Al 核の核四重極共鳴法(NQR)による緩和時間の測定がなされ $1/T_1 \sim T^3$ の 温度依存性が報告されている[24]. これより超伝導ギャップは、UPd₂Al₃ 同様ラインノードギャップと 考えられる. 次章でUPd₂Al₃とUNi₂Al₃におけるナイトシフトの実験から明らかになった超伝導対の対 称性の違いについて考察する.

5. UNi₂AI₃と UPd₂AI₃の超伝導対称性の違いについての考察

U*M*₂Al₃ (*M* = Pd and Ni)は同じ結晶構造をもちながら,超伝導対の対称性が異なることが NMR の実験から明らかになった.果たしてこの違いは何に起因しているのであろうか?この問いに答えることは強相関電子系におけるスピン3重項の機構を解明する大きな手がかりになるものと考えられる.

 $1/T_1$ や中性子非弾性散乱の実験から、常伝導状態の磁気秩序状態及び磁気ゆらぎが、両物質で大き く異なることが示唆されている. 我々は、この異なる磁気特性が超伝導対の対称性の違いと密接に関 係しているのではないかと考えている. 図7に UPd₂Al₃とUNi₂Al₃における $1/T_1$ の振舞いの違いを示す [25]. UPd₂Al₃ では、反強磁性秩序によって生じるウラン磁気モーメントからの影響は、磁気的に対称 位置にある Al 位置では打ち消され、 T_N より十分低温ではフェルミ面近傍の重い準粒子の熱励起のため 金属状態に特有の $T_1T = -$ 定の関係が成り立っている. これに対し UNi₂Al₃では遍歴電子磁性体で見 られる振舞いをしており、150 K 以下から T_c 直上までの常伝導状態は弱い反強磁性体に見られる (SCR 理論**の結果とよく一致した)振舞いをしている.また UPd₂Al₃の磁気モーメントの大きさは、

0.85μ_Bと5fの局在系の磁気モーメントに匹敵する大きな ものであるのに対し、UNi₂Al₃は 0.2μ_Bと小さく、この結 果からも UNi₂Al₃の 5f 電子は遍歴的性質が強いと考えら れる.

この磁気特性の違いは中性子非弾性散乱からも見て取 れる[26,27]. UPd₂Al₃の超伝導状態では磁気ゆらぎに2つ のピーク構造が見られ、重い電子の準粒子状態に起因す る低エネルギー成分と局在モーメントの励起に起因する 高いエネルギー成分に分離されることが示された.この 中性子散乱の実験に基づき,佐藤らは局在モーメント間 の磁気励起子(magnetic exciton)を媒介にして*d* 波超伝導 が発現すると主張している[28].一方,UNi₂Al₃では, UPd₂Al₃で見られたような2つのピーク構造は観測され ず,複数の*5f*電子が遍歴性を保ったまま超伝導に転移し ている[29].つまり,UPd₂Al₃では複数ある*5f*電子のうち, 磁気秩序に関係する*5f*電子と超伝導に関係する*5f*電子 といったように*5f*電子に、**すみわけ**"が出来ているのに 対し,UNi₂Al₃では複数の磁気的な*5f*電子が超伝導対を形 成していると考えられる.当然,*T*。直上の重い電子バン

図 7: UNi₂Al₃と UPd₂Al₃の 1/T₁の振る 舞い. UNi₂Al₃の曲線は、遍歴反強磁性 体のモデル(SCR 理論)による fitting. Ref.[25]より転写

ドでの 5f 電子の割合は両物質では異なっているはずである.他の重い電子系超伝導物質の Ce 化合物 では、例外なく d 波超伝導が起こっている.Ce 系では Ce-4f¹が重い電子状態を形成し超伝導になって いる. d 波超伝導が実現している UPd₂Al₃では、T_c直上で遍歴している 5f 成分は Ce 系と似た 5f¹に近 い状態であり、UNi₂Al₃では三重項超伝導 UPt₃と同様に複数の 5f 電子が遍歴性を保ったまま超伝導に なっているものと考えられる.この意味では**、**遍歴する 5f 電子の数"と超伝導対称性は関係している ように思われる.

またUNi₂Al₃の磁気励起の特徴として, *T*_c近傍で磁気励起に大きな異方性が存在することがあげられ る. 図 8 に磁場を c 軸に垂直にかけて得られた 1/*T*₁[(1/*T*₁)_{ab}], NQR によって得られた 1/*T*₁[(1/*T*₁)_{NQR}]を示 す. 興味深いのは, *T*_Nにおける磁気励起の異常が(1/*T*₁)_{NQR}に見られないことである. (1/*T*₁)_{ab}と(1/*T*₁)_{NQR} はそれぞれ動的スピン成分[*S*_i(q, ω_n)]の ab 面内成分(in)と ab 面に垂直成分(out)とに関係づけられる. 両 成分の 1/*T*₁より求められた *S*_i(q, ω_n) (*i* = in and out) は, ab 面に垂直(c 軸に平行)な磁気励起が 10 K から 発達し, *T*_N以下超伝導転移直上で $\Sigma_q S_{out}(q, \omega_n) / \Sigma_q S_{in}(q, \omega_n) \sim 4$ の大きな異方性が存在することを示してい る. このような大きな磁気励起の異方性はUPd₂Al₃には見られなかった振舞いである[13]. UNi₂Al₃に見 られる大きな異方的磁気励起と前述の *H*_{c2}の異方性は関係しているように思われる.

最近の理論研究からは、磁気秩序近傍のSDW的な反強磁性ゆらぎが、大きな異方性をもつ場合は三 重項超伝導の実現に有利に働くことが指摘されている[29]. 通常反強磁性スピン相関は *d* 波超伝導を 引き起こすと考えられるが、異方的で格子の周期と非整合な波数をもつ反強磁性的スピン相関はスピ ン三重項超伝導対のスピン成分の決定に関係するという考えである. 異方的 SDW 的な磁気励起の起 源はフェルミ面のネスティングによるものと考えられる. この理論と実験結果を比較するためには、 UNi₂Al₃でのフェルミ面の情報を得る実験が待たれる.

また理論的な立場から、西川と山田(京大理)は UPd₂Al₃ と UNi₂Al₃ の *T*_c以上の磁気状態の違いに着目し、超伝導の対称 性の議論を行っている[30]. UPd₂Al₃ では ab 面内に局在モー メントが発生することからフェルミ面の対称性が6回対称か ら2回対称になるのに対し、UNi₂Al₃ では6回対称を維持した まま超伝導になる. この違いが異なる性質の磁気ゆらぎを引 き起こし、その結果対称性の異なる超伝導の出現に導くとい うものである. 彼らのモデルではフェルミ面の形状が *T*_cを決 定する重要な要素となっている. この理論検証のためにも UNi₂Al₃ に対しド·ハース=ファン·アルフェン(dHvA)等のフェ ルミ面に関する情報が待たれる.

図 8: UNi₂Al₃の 1/*T*₁の方向依存性. c 軸に垂直に磁場をかけて測定された (1/*T*₁)_{ab} と NQR によって得られた (1/*T*₁)_{NQR}. 10K 以下の振る舞いに大きな 異方性が見られる.

最後に

我々は、重い電子超伝導体UNi₂Al₃に対し、ab面内のナイトシフト測定から超伝導転移に伴いスピン 帯磁率が全く変化しないという結果を示した. これは UNi₂Al₃ がスピン三重項超伝導体であり、対の スピンが ab 面内に存在することを示唆する結果と考えられる. 同じ結晶構造の UPd₂Al₃ が *d* 波超伝導 と同定されていることを考慮すれば、UNi₂Al₃ が三重項超伝導というのは一見不思議に思えるが、両物 質での異なる常伝導状態の磁気励起を考え合わせれば、UM₂Al₃(*M* = Pd and Ni)は磁気励起の違いが超 伝導対の対称性と関係した系と考えられる. その意味では磁気相関と対の対称性との相互関係を調べ ることの出来る大変興味深い系といえる.

しかしながら UNi₂Al₃の超伝導状態の研究は上記の NMR の結果はあるものの,単結晶を用いた希釈 温度までの比熱の測定や磁気抵抗等の基礎的な実験結果も報告されていない現状である.また NMR の実験も,超伝導状態でのナイトシフトや 1/*T*₁の異方性の測定も不完全であり,今後更なる測定が必 要である.NMR 実験をしている者から言えば,U*M*₂Al₃は測定核が NMR 信号の強い Al というのが好都 合で,詳細な磁場変化,角度変化を調べることの出来る,数少ない物質である.今後このような実験を 通して,スピン三重項超伝導に起因した新たな現象が発見できることを期待している.

本研究の主要部分である UNi₂Al₃ の超伝導状態のナイトシフト測定は,筆者が阪大基礎工の助手時 代に行ったものであり,UPd₂Al₃の実験結果は藤秀樹氏(現広島大先端研)及び研究室の卒業生によるも のである.最近の結果として紹介した,パイロクロア型超伝導体 Cd₂Re₂O₇ の実験は,化学教室の吉村 ー良教授と原研酒井宏典,徳永陽氏との共同研究であり,測定には京大低温物質科学センターの超伝 導マグネットを使用した.また日頃から寒剤使用に対しお世話になっている大塚晃弘氏,西下博紹氏 をはじめ,低温物質科学センター運営関係者に感謝いたします.

- * 重い電子系: Ce や U を含む化合物に見られる低温の電子状態. 高温で局在的な 4f 電子が, 伝導電 子との相互作用により低温で遍歴的になり, 有効質量が 100~1000 倍もの、、重い電子"として振舞 う物質群. これらの系は, 電子間のクーロン相互作用 U が重要となった遍歴電子状態と理解され る.
- ** SCR 理論: 守谷 et al.により構築された遍歴電子磁性を記述する理論. 多くの d 電子系遍歴磁性体の 性質はこの理論により理解されている.

9

- [1].Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).
- [2] P.W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961)
- [3] W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).
- [4] D. D. Oscheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885 (1972).
- [5] F. Steglich et al., Phys. Rev. Lett. 43, 1892 (1979).
- [6] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
- [7] R. A. Fisher, D. Kim, B. F. Woodfield, N. E. Phillips, L. Taillerfer, K. Hasselbach, J. Flouquet, A. L. Giorgi and J. L. Smith, Phys. Rev. Lett 62, 1411 (1989).
- [8] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichitenberg, Nature (London) 372, 532 (1994).
- [9] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, Nature 396, 658 (1998).
- [10] K. Ishida, H. Mukuda, Y. Kitaoka, Z. Q. Mao, H. Fukazawa, and Y. Maeno, Phys. Rev. B. 63, 060507 (2001).
- [11] J. A. Duffy, S. M. Hayden, Y. Maeno, Z. Q. Mao, J. Kulda, and G. J. McIntyre, Phys. Rev. Lett. 85, 5412 (2000).
- [12] L.C.Hebel and C.P.Slichter, Phys Rev. 113, 1504 (1959).
- [13] K. Ishida, D. Ozaki, T. Kamatsuka, H. Tou, M. Kyogaku, Y. Kitaoka, N. Tateiwa, N. K. Sato, N. Aso, C. Geibel, and F. Steglich, Phys. Rev. Lett. 89, 037002 (2002).
- [14] C. Geibel, C. Schank, S. Thies, H. Kitazawa, C.D. Bredl, A. Bohm, M. Rau, A. Grauel, R. Caspry, R. Helfrich, U. Ahlheim, G. Weber, and F. Steglich, Z.Phys.B 84, 1 (1991).
- [15] C. Geibel, S. Thies, D. Kaczorowski, A. Mehner, A. Grauel, B. Seidel, U. Ahlheim R. Helfrich, K. Petersen, D. Bredl, and F. Steglich, Z. Phys. B 83, 305 (1991).
- [16] A. Krimmel, P. Fisher, B. Roessli, H. Maletta, C. Geibel, C. Shank, A. Grauel, A. Loidl, and F. Steglich, Z. Phys. B 86, 161 (1992).
- [17] A. Schröder, J. G. Lussier, B. D. Gaulin, J. D. Garrett, W. J. L. Buyers, L. Rebelsky, and S. M. Shapiro, Phys. Rev. Lett. 72, 136 (1994).
- [18] R. Caspary, P. Hellmann, M. Keller, G. Sparn, C. Wassilew, R. Köhler, C. Geibel, C. Schank, F. Steglich, and N. E. Phillips, Phys. Rev. Lett. 71, 2146 (1993).
- [19] 北岡良雄, 固体物理 33, 295 (1998)
- [20] Y. Dalichaouch, M. C. de Andrade, and M. B. Maple, Phys. Rev. B 46, 8671 (1992).
- [21] N. Sato, N. Koga, and T. Komatsubara, J. Phys. Soc. Jpn. 65, 1555 (1996).
- [22] 例えば、朝山邦輔:「遍歴電子系の核磁気共鳴」(裳華房)参照
- [23] M. Kyogaku, Y. Kitaoka, K. Asayama, N. Sato, T. Sakon, T. Komastubara, C. Geibel, C. Schank and F. Steglich, Physica B 186-188, 285 (1993).
- [24] H. Tou, Y. Kitaoka, T. Kamatsuka, K. Asayama, C. Geibel, and F. Steglich, Physica B 230-232, 361 (1997).
- [25] M. Kyogaku, Y. Kitaoka, K. Asayama, C, Geibel, C. Schank, F. Steglich, J. Phys. Soc. Jpn. 62, 4016 (1993).
- [26] N. Metoki, Y. Haga, Y. Koike, Y. Onuki, Phys. Rev. Lett. 80, 5417 (1998)
- [27] N. Sato, N. Aso, G. Lander, B. Roessli, T. Komatsubara, and Y. Endo, J. Phys. Soc. Jpn. 66, 2981 (1997).
- [28] N. Aso, B. Roessli, N. Bernhoeft, R. Calemczuk, N. K. Sato, Y. Endo, T. Komatsubara, A. Hiess, G. H. Lander, H. Kadowaki, Phys. Rev. B 61, R11867 (2000).

- [29] T. Kuwabara and M. Ogata, Phys. Rev. Lett. 85, 4586 (2000).
- [30] Y. Nisikawa and K. Yamada, J. Phys. Soc. Jpn. 71, 2629 (2002).

新しい幾何学的スピンフラストレーション系の創製

New Generation of Geometrically Frustrated Spin Systems

陰山 洋

京都大学大学院理学研究科化学教室

Hiroshi Kageyama

Department of Chemistry, Graduate School of Science, Kyoto University

1. はじめに

「フラストレーション(frustration)」という言葉の世間での印象は芳しくない.元来,「むだに; むなしく」という意味のギリシャ語 frustra に語源があるらしい.辞林21(国語辞典)によると,現 在では「欲求が満たされない状態.または,その結果生じる不快な緊張や不安,不満.欲求不満」と いう意味で使われている.実生活においてこのフラストレーションを感じる状態はなるべく避けたい と願うのが普通であるが,よく考えると,地球上の全ての人が程度の差こそあれフラストレーション を感じているはずである.そういう意味で上手に生きるのに大切なことは,むしろ如何にそれを解消 するかということであろう.幸せそうに生きている人は,友人とお酒を飲んだり,我が子と遊ぶこと などで上手に解消する術を知っているだけかもしれない.

前置きが長くなったが,固体物性の業界ではこの悪玉フラストレーションは全く違った扱われ方を している.つまり,新奇な現象を引き起こすために必要不可欠な善玉としてもてはやされている.-般にある自由度(例えばスピン,電荷,軌道)が幾何学的にフラストレートしている物質では,巨視的 な縮退があるため基底状態がどうなるか自明ではない.物質の世界でも,人間の場合と同じようにフ ラストレーションを解消する努力(?)を様々な形でした結果,魅力的な相転移や臨界現象を我々に 提供してくれる.例えば,量子スピン系三角格子反強磁性体の基底状態は,古典的な反強磁性長距離 秩序状態ではなく,一重項スピン対が次々と相手を変えながら動き回るスピン液体状態(RVB 状態) といわれている[1].その状態にキャリアを注入すると異方的超伝導が発現するというシナリオは, 高温超伝導体の発見直後に出された.高温超伝導の発現機構は未だ混とんとしているが,最近発見さ れた三角格子コバルト層状酸化物のおいてこのシナリオが当てはまる可能性があるとして注目されて いる[2].

私が博士課程学生の頃,本誌の前身である極低月報の研究だよりに,イジングスピン三角格子化合物 Ca₃Co₂O₆のメスバウアー効果について書いた [3] 思えばそのころから私はこの善玉フラストレーションの魅力にとりつかれている.しかし,本稿の主題である二次元銅硼酸化物 SrCu₂(BO₃)₂ が実現した Shastry-Sutherland 格子は,これまで扱われてきたフラストレーション系とは一線を画した新しいタイプといえる.SrCu₂(BO₃)₂のユニークな物性はその幾何学的特徴と深く結びついている.その魅力の一部を伝えたい.予想される読者層を考慮して,裏話をまじえながらある程度気楽に読んでいただけるように心がけた.真剣に勉強されたい方は参照文献などをご覧頂きたい.最近出版された理論

のレビュー [4] も参考になる.本年度五月に化学教室に着任したばかりなので,所信表明を兼ねて今後の私の研究の展開(希望)についても触れたい.

2. モデル

幾何学的フラストレーションと言葉を最初に耳にするとき、大抵の人は図1に示すようなとんち絵 を使って教わったのではなかろうか.正方形や正三角形の頂点(格子点)にスピンを矢印にみたてて 置くわけである.ここで隣あうスピン間の相互作用は反強磁性的(J>0)とし,スピンは異方性が強 く上()か下()しか向けないと仮定しよう(イジングスピンという).図1(a)の正方形を場 合,全てのスピン対において反平行の条件を満たすことができる(もちろんどちらを ()にする かで二重縮退があるが).ところが,正三角形のときは全てのスピン対が反対方向を向くことのでき るスピン構造は存在しない(図1(b)). などの組み合わせを考えると, ゼロ磁場下の . 基底状態は六重に縮退している.一般的には辺が数が偶数のときは安定な配列が決まるが,奇数のと きには決まらない.より高次元で巨視的な数に及ぶ縮退を得るには,このクラスター模型の議論の拡 張,すなわち正三角形を周期的に並べればよいということに気付く.こうして得られる格子の例を挙 げると,図2に示すように (a) デルタ鎖,(b) ジグザグ鎖(一次元系),(c) 三角格子,(d) カゴメ格 子(二次元系),(e)パイロクロア格子(三次元系)などがある.幾何学的フラストレーションとい うと一般にこれらの模型のことを指す.70年代,80年代は三角格子の研究 [5] が中心であったが,こ こ10年はカゴメ格子やパイロクロア格子の研究 [6] が精力的になされている.

図1 (a) 正方形と (b) 正三角形上に置いたスピン

さて,この戦略が幾何学的フラストレーション系を創る唯一の手段であろうか?確かに上述した議論から,正方形を高次元空間に並べてもフラストレーションが生じないことは明らかである.しかしながら以下に示すように一工夫をいれることで事態は一変する.例えば図3(a)のように二次元正方格子に周期的に欠損をいれてみよう.この格子は 1/5 欠損型正方格子またはプラケット格子と呼ばれ,

CaV4O9 が対応する物質である [7].欠損を導入することで,正方形を作る相互作用(実線)とその 正方形を結ぶ相互作用(点線)は等価ではなくなる.その相互作用の比を変えることにより,スピ ン一重項状態など様々な状態が現れることが理論的に予言されている.別の方法は正方格子に対角 線相互作用(点線)をいれることである.これにより二等辺三角形ができるため,対角線相互作用 が反強磁性的ならば必ずフラストレーションが生じることがわかる.対角線の入れ方(密度)によ って図3(b)-(d)の模型はそれぞれ J₁-J₂格子,チェッカーボード格子,Shastry-Sutherland格子といわ れている.図2に示した正三角形を基調としたフラストレーション系に比べ,図3の正方形を基調と したフラストレーション系はほとんど調べられていない.その理由として考えられることは,多くの 人が「フラストレーション=正三角形」という構図にとらわれすぎている可能性があること,また後 者のモデル物質が殆ど存在しない(あるいはない)ことである.しかしひとたび適当なモデル物質が 発見されれば,その系の理解が大きく進む可能性を秘めている。Shastry-Sutherland 模型のように[8].

(a)

(b)

図3 正方形を基調としたフラストレーショ ン格子群: (a) 1/5 欠損正方格子.

- (b) 二次元 J₁-J₂ 格子.
- (c) チェッカーボード格子.

(d) Shastry-Sutherland 格子.

図 2 正三角形を基調としたフラストレーショ ン格子群:(a) デルタ鎖.(b) ジグザグ鎖.

- (c) 三角格子 . (d) カゴメ格子 .
- (e) パイロクロア格子.

3. Shastry-Sutherland 模型

図3(d)に示した格子は,1981年に厳密解や可積分系の理論家として有名な B.S. Shastry と B. Sutherland (ユタ大学)による2ページほどの短い論文で初めて報告された[9].その論文では,厳密 なスピン一重項基底状態をもつことは述べられているものの,その模型自体が非常に特殊(非現実的)

であると思われたためか理論家の注目を浴びることはなく,ましてや殆どの実験家の目にとまること はなかった(はずである).1998年秋に来日した Shastry に「どんな経緯でこんな"変な"格子を思 いついたのか」と質問したことがある.そのとき彼はこのように答えた.「三角格子は六配位,正方 格子は四配位であるが,その間の五配位の格子はないだろうか?と考えたのがきっかけである」と. 一介の化学屋には理解不能の難しい専門用語が並ぶ答えを予期していただけに,彼のその言葉は意外 であり,今でも強烈な印象として残っている.面白いことはこういう単純な発想から産まれるものな のかもしれない.

この格子には名前すらなかったので, SrCu₂(BO₃)₂の研究を始めた当初,物性研の上田(寛)教授と この格子に(カゴメ格子やトレリス格子のような)洒落た名前をつけようと百科事典を見たりした.し かし,ふさわしい名前が思いつかず,最終的に発見者に敬意を表して Shastry-Sutherland 格子と呼ぶこ とにした.現在では,Shastry-Sutherland 格子か,あとに述べる理由で直交ダイマー格子と呼ばれている.

SrCu₂(BO₃)₂の構造を簡単に説明しよう.室温では正方晶(空間群 *I*42*m*; No. 121)に属する [10].*c* 軸方向に積層した CuBO₃ 面の面間に Sr²⁺ イオンがインターカレートしている層状構造と見なせる. [001] から見た CuBO₃ 面を図4の右に示す.Cu²⁺ イオンはヤーンテラーイオンであるため酸素と平 面四配位(CuO₄)し,更に稜共有によってダイマー(Cu₂O₆)を形成する.各々のダイマーは BO₃を 介して隣のダイマーとつながり二次元ネットワークを形成する.CuBO₃ 面は体心格子(*I*)を反映し て *c* 軸方向に 90 度回転しながら積み重なっている.*S* = 1/2 を有する Cu²⁺ は,全て結晶学的に等価 な位置(ワイコフ記号 8i)にいる(*Z* = 4).室温構造には CuBO₃ 面に若干の凹凸があるが,395 K における変位型構造相転移によってそれより高温で完全にフラットになる.つまり CuBO₃ 面が鏡面 となり,[001] と垂直な *c* 映進面が生じるので空間群は *I*4/*mcm*(No. 140)へと変わる(*Z*=4).Cu²⁺ イオンは結晶学的に等価な 8h 上にいる.

図4 0.08 Kで測定した SrCu₂(BO₃)₂ の磁化曲線.Cu²⁺の飽和磁化の 1/3,1/4,1/8 の 磁化にプラトーが存在する.挿入図右は [001] 方向からみた SrCu₂(BO₃)₂ の結晶構造 (CuBO₃面).挿入図左は 1/8 プラトーが観測された当時,提案された超格子構造(図 5の超格子と比較されたい).白ダンベルと黒ダンベルは,それぞれスピン一重項状態 とスピン三重項状態.実線は結晶構造の単位格子で点線は磁気構造の単位格子.

15

このような構造上の特徴を考慮すると、 $srCu_2(BO_3)_2$ の磁性は O² と (BO₃)³⁻を媒介とした超交換相 互作用で説明できそうである.ダイマー内相互作用を J,ダイマー間相互作用を J' と定義しよう.*c* 軸方向にはそのようなパスはないので,面間相互作用は J や J' より小さいとみなせる.図4から Cu^{2+} を抜き出した S = 1/2 二次元ネットワークは図3(d)のそれと一見異なるようにみえるが,物性研 のもう一人の上田(和)教授と当時博士課程の学生だった宮原氏(現青山学院大助手)は,二つの格 子が幾何学的に全く等価であることに気付いた [11]. 興味がある方は Shastry-Sutherland 格子を $SrCu_2(BO_3)_2$ 格子へ変換する動画をご覧頂きたい [12]. Shastry-Sutherland 模型の最も重要な特徴の一 つは,ダイマースピン一重項の直積が厳密な固有状態になることである.このことは J' がゼロのと きは自明であるが,J' が有限な値をとるときでもフラストレーション(ダイマーの直交性)によって 厳密性は保たれる(これは化学教室院試レベルの計算).この模型において,J と J'(および面間相 互作用 J")をパラメータとした相図は数多くの理論家によって考察されているが(例えば [11,13]), J'/J=0.68 以下ではスピン一重項状態が基底状態となると考えられている.実際に J=85 K,J'=54 K (J'/J = 0.635) といわれている $SrCu_2(BO_3)_2$ では,種々の実験によりスピン一重項状態が確認され, 基底状態と最低励起状態のエネルギー差 Δ (スピンギャップ)は,単結晶を用いた ESR,中性子散乱, NMR 実験などによって $\Delta = 34$ Kと見積もられている [8, 14-16].

余談ではあるが,この仕事を始めた当初(1998年初夏),私はもちろんのこと宮原氏,上田(和) 氏も論文 [9]の存在に全く気付いていなかった.物性研の階段で宮原氏とすれ違ったときに彼は 「SrCu₂(BO₃)₂の格子は図3(d)と書き直せるから,既に誰か考えているような気がする」と心配して いた.「そんな"変"な格子なんて誰も考えないよ」と私は無責任なことを(でも半分確信に満ちて) 言ったのだが,後になって宮原氏の論文投稿の過程で,「考えた人がいた!」ことをプレプリサーバ ーで論文を読んだ人から指摘されたときは愕然とした.物性研のダブル上田研・発の成果として盛り 上がろうとしていただけにいささか残念な思いもあった.しかし,以下に示すように本物質(模型) は励起状態のほうが格段に面白いのである.そのことを最初に理論的に示した論文 [11] は, Shastry-Sutherland 論文と同等かそれ以上の価値があると思う.

励起状態の話に移る.一般にスピン一重項基底状態を磁場により壊したとき,どのような状態があ らわれるか考察しよう.最低励起状態であるスピン三重項状態は,磁場によってゼーマン分裂を起こ すため,スピンギャップの大きさは磁場に比例して減少する. >0の間は絶対零度での磁化はゼロ である.さらに磁場を加えていくと,ある磁場(臨界磁場)で基底状態と最低励起状態の二準位が交 わり,それ以上で有限の磁化が出始める.ここでダイマー間相互作用がゼロならば,磁化はすぐさま 飽和磁化に達するはずであるが,有限のダイマー間相互作用のある場合は,スピン三重項間の斥力に より磁化は(飽和磁化に達するまで)なだらかに増加することが期待できる.逆にいえば,磁化曲線 によりダイマー間相互作用を見積もることができる.

この動機に沿って,40 T までの SrCu₂(BO₃)₂ のパルス磁場磁化測定を東大物性研の後藤研究室で N.V. Mushnikov 氏らと行った.図4に示すのは,後に阪大極限センターの鳴海氏,金道氏によってよ リ70 T まで測定された結果である.温度はスピンギャップよりも十分に小さい低温の 0.08 K で, 磁場は Shastry-Sutherland 面(*ab* 面)に垂直にかけている.予想通り,スピンギャップに対応する磁 場以上でゆっくりと磁化が増加していったが,予期しなかったことが起こった.磁化が単調に増加す るのではなく飽和磁化の 1/3,1/4,1/8 に対応する磁化の位置にプラトーが観測されたのである [8,17]. 磁化プラトーは,Ca₃Co₂O₆ [3] などのイジング異方性が強い物質では数多く観測されているが,磁化 容易軸に平行に磁場を印加したときのみ観測される.しかし本物質では,磁場を *ab* 面内にかけたと きにも同様のプラトーが観測されている(g 因子の異方性によるプラトー相転移磁場の僅かな違いは ある).つまり,量子スピン系 SrCu₂(BO₃)₂の磁化プラトーの発現機構は古典スピン系にみられる磁 気異方性によるものではく,新しい量子現象といえる.

ここでもフラストレーション(あるいはダイマーの直交性)が大きな役割を果たすことが宮原・上 田理論により明らかとなった[11].彼らはダイマースピン一重項状態の海の中(すなわち基底状態) に,スピン三重項状態を一個だけ置いた場合を考察した.J'を摂動として考えたとき,六次摂動にな って初めてスピン三重項が隣のダイマーサイトに移ることを見出した.これが意味するのは,スピン 三重項が非常に局在しやすい性格をもつことである.換言するとフラストレーションによりスピン三 重項の伝搬は困難になる.したがって,プラトーの外では遍歴していたスピン三重項励起状態が,(結 晶格子と整合した磁化の値をもつ)プラトー領域では局在し,超格子構造を作っていると考えること ができる.これはまさに電子系のモット転移(金属絶縁体転移)に対応する現象である.モット転移 は温度や組成変化によって観測されることが多いが,本スピン系の局在非局在転移は,磁場という, よりクリーンなパラメータによってスピン三重項励起の数を制御できる.しかも絶対零度での量子相 転移を調べることができるという利点がある.

スピン三重項励起の著しい局在性は,単結晶を用いたゼロ磁場下での非弾性中性子散乱実験 [15] から証明されているので,磁化プラトーの発現が局在非局在転移によるものであるというシナリオは 妥当であろう.しかしながら,各プラトーでの超格子構造やその相転移の詳細は未知のままであった. 例えば,1/8 プラトー領域では,スピンー重項ダイマーと三重項ダイマーを白黒とみなすハードコア ボゾン模型から,図4の左側に示す超格子構造が提案されていたが [11],実験的には「強磁場」が障 壁となって実験(特に微視的な測定)が進んでいなかった.

ところが,最近になってグルノーブルの強磁場施設で強磁場と超低温を組み合わせた NMR が行え るようになり,大きな進展がみられた.図5に,東大物性研の樹神らが中心となって測定した 27.6 T (1/8プラトーのちょうど中間)35 mK における Cu-NMR スペクトルを示す [18].幅広い周波数にわ たって広がった多数のシャープなピークより,超格子構造が存在することと,数多くの非等価な銅サ イトの存在と読みとれる.解析の結果,少なくとも12種類以上の非等価な銅サイトがあることが明ら かとなった.大ざっぱにいうと 300 350 MHz の領域が局所磁化がゼロの銅サイトであり,それ以下 (以上)の周波数領域が磁場と平行(反平行)な局所磁化をもつ銅サイトに対応する.興味深いこと に,幾つかの銅サイトは磁場と反平行の局所磁化をもつことが見てとれる.図4の左側に示したスピ ンー重項と三重項のみからなる超格子構造は,幅広い値の内部磁場を与える銅サイトの存在を説明で きないし,特に,磁場と反平行の局所磁化は持ちえないので,この実験データと明らかに矛盾する. 詳細は省くが,図5の挿入図に示すような斜方晶の単位格子をもち,その単位格子の中で局所磁場が 振動していることが明らかとなった.これらは(スピン格子相互作用を組み込んだ)ハイゼンベルク 模型から定量的に見事に説明された.また斜方晶の単位格子を反映して(ランダウ・リフシッツ理論 [19]より)一次転移である.現在,グルノーブルでは,1/4プラトーで同様の実験を行えるように装置 を開発中とのことで,その完成と今後の実験を心待ちにしている.

図5 27.6 T, 35 mK で測定した SrCu₂(BO₃)₂ の NMR スペクトルと 1/8 プラトーに 対応する磁気構造.黒丸(白丸)は局所磁化が磁場と平行(反平行)な銅サイトで丸の 大きさは各サイトの磁化の大きさを示す.点線は斜方晶磁気単位格子

4. 今後の展開

昨年 Science 誌に, T.M.Rice がシェークスピアになぞらえた「To Condense or Not to Condense」と いう題名で, TICuCl₃ と SrCu₂(BO₃)₂の磁性を対比している [20].ダイマースピン一重項系において 磁場でギャップをつぶしたときに, TICuCl₃のように運動エネルギーが支配的なときにはスピン三重 項励起(マグノン)のボーズ・アインシュタイン凝縮が, SrCu₂(BO₃)₂のようにスピン三重項励起の斥 力相互作用が支配的なときには磁化プラトー(局在・非局在転移)が発現するとしている.ダイマー 系というと,水素分子に始まる二体問題で大昔に解決した現象だと思われがちであるが,"強相関ダ イマー系"には新しい物理がまだまだ眠っているような気がする、物質探索をする価値はありそうだ.

最後になるが,化学教室に着任してから取り組んでいることを紹介したい.SrCu₂(BO₃)₂の研究からの成り行き上,またひねくれた自分の性格も手伝って(パイロクロアやカゴメ格子などの流行モノには手を出さないで)図3に載せた正方形を基調にしたモデルの探索を行うことにした.合成手法としてはソフトケミストリーの1つであるイオン交換法を用いる.正方格子といえばペロブスカイトということで層状ペロブスカイトを母体として用い,低温で遷移金属ハライドと反応させた.上手くいった例として RbCa₂Ta₃O₁₀ と FeCl₂の反応式をしめす [21].

$RbCa_2Ta_3O_{10}+FeCl_2 \qquad (FeCl)Ca_2Ta_3O_{10}+RbCl$

図6に反応前後の構造を比較した.ペロブスカイトのブロックの構造を保ったまま,Rb⁺が(FeCl)⁺ と置き換わり,Fe²⁺イオンは正方格子を形成している.CF イオンは Fe²⁺イオンが作る正方形の中 心に位置しているため,最近接相互作用と次近接相互作用が拮抗している可能性がある.もしこれが 本当ならば,この物質はJ₁-J₂ 模型(図3(b))にマップできるかもしれない.帯磁率の温度変化から は逐次相転移を示す異常が二カ所見つかっており,フラストレーションと関連していそうである.現 在は,メスバウアーなどの物性測定を行いながらさらに議論をしている最中である.*J*₁-*J*₂ 模型を実現 する物質は VO(Ge,Si)O₄[22] など幾つか報告されているが,最も興味深いと思われるスピン一重項状 態は実験的に得られていない.上記の反応で遷移金属ハライドの種類を変えるなどして,*J*₁-*J*₂ 模型に 対応した様々な相が得られることが期待できる.もっと大きな見地からいうと,固相反応法に比べて イオン交換に代表されるソフトケミストリーは以下の点で優れている: 非磁性体からでも磁性体を 創製できる,反応物は母体の構造を保つため物質設計が容易である,定比組成のものが得られる, などである.よって *J*₁-*J*₂ 模型だけではなく図2,図3を含むあらゆるトポロジーをもった磁性格子 を得るポテンシャルを秘めていると考えている.現在,中西立氏,北野太郎氏をはじめとした学生諸 君が一生懸命頑張っている.何かデカイことをやってくれそうな予感がしている(期待していますよ).

図6 RbCa₂Ta₃O₁₀(左)と(FeCl)Ca₂Ta₃O₁₀(右)

6. 謝辞

本稿を書く機会を与えていただいた物理教室の前野教授に感謝する.SrCu₂(BO₃)₂ に関する仕事は, 東京大学物性研究所附属物質設計評価施設・上田(寛)研究室に在職中(1998年4月 2003年5月)に, 物性研究所内の幾つかの研究室との共同研究によって大きく発展した.特に(以下敬称略)上田寛, 後藤恒昭,加倉井和久,阿曽尚文,西正和,瀧川仁,樹神克明,上田和夫,宮原慎,各氏に感謝した い.また阪大極限センターの金道浩一,鳴海康雄氏には磁化測定でお世話になった.(FeCl)Ca₂Ta₃O₁₀ などイオン交換に関する仕事は,筆者がニューオリンズ大学に滞在中に J.B. Wiley L. Viciu, G. Caruntu と共に行ったものである.最後に,仕事のストレスを発散させてくれる化学教室筋トレ(遊び)部の 皆さんと,慣れない京都生活でフラストレーションを感じながらも生活(育児)に奮闘している家内 に感謝したい.

- [1] P.W. Anderson, Mater. Res. Bull. 8, 153 (1973).
- [2] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilianian, and T. Sasaki, Nature 422, 53 (2003).
- [3] 陰山洋, 極低月報 71, 12 (1997).
- [4] S. Miyahara and K. Ueda, J. Phys.: Condens. Matter 15, R327 (2003).
- [5] 例えば,長谷田泰一郎,目方守,「三角格子上の物理」物理学最前線 26.
- [6] 例えば,国際会議「Highly Frustrated Magnetism 2003 (Grenoble)」の大半の講演はパイロクロア かカゴメ格子であった(http://www.grenoble.cnrs.fr/hfm2003/)
- [7] Taniguchi, T. Nishihara, Y. Yasui, Y. Kobayashi, M. Sato, T. Nishioka, M. Kontani, and K. Sano, J. Phys. Soc. Jpn. 64, 2758 (1995).
- [8] H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Onizuda, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999).
- [9] B.S. Shastry and B. Sutherland, Physica (Amsterdam) 108B, 1069 (1981).
- [10] K. Sparta, G.J. Redhammer, P. Roussel, G. Heger, G. Roth, P. Lemmens, A. Ionescu, M. Grove, G. Güntherodt, F. Hüning, H. Kueken, H. Kageyama, K. Onizuka, and Y. Ueda, Eur. Phys. J. B 19, 507 (2001).
- [11] S. Miyahara and K. Ueda, Phys. Rev. Lett. 82, 3701 (1999).
- [12] http://www.kinso.kuchem.kyoto-u.ac.jp/~kage/SrCuBO.html
- [13] A. Koga and N. Kawakami, Phys. Rev. Lett. 84, 4461 (2000).
- [14] H. Nojiri, H. Kageyama, K. Onizuka, Y. Ueda, and M. Motokawa, J. Phys. Soc. Jpn. 68, 2909 (1999).
- [15] H. Kageyama, M. Nishi, N. Aso, K. Onizuka, T. Yosihama, K. Nukui, K. Kakurai, K. Kodama, and Y. Ueda, Phys. Rev. Lett. 84, 5876 (2000).
- [16] K. Kodama, J. Yamazaki, M. Takigawa, H. Kageyama, K. Onizuka, and Y. Ueda, J. Phys. Cond. Matt. 14, L319 (2002).
- [17] K. Onizuka, H. Kageyama, Y. Ueda, T. Goto, Y. Narumi, and K. Kindo, J. Phys. Soc. Jpn. 69, 1016 (2000).
- [18] K. Kodama, M. Takigawa, M. Horvatic, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, and F. Mila, Science 298, 395 (2002).
- [19] J-C. Tolédano, P. Tolédano, The Landau Theory of Phase Transitions (World Scientific Publishing, Singapore, 1987).
- [20] T.M. Rice, Science **298**, 760 (2002).
- [21] H. Kageyama, L. Viciu, G. Caruntu, Y. Ueda, and J.B. Wiley, J. Phys. Condensed Matter, in press.
- [22] R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini, M. Troyer, P. Millet, and F. Milla, Phys. Rev. Lett. 85, 1318 (2000).

磁気冷凍と巨大磁気熱量効果

Magnetic Refrigeration and Giant Magnetocaloric Effect

和田裕文

京都大学大学院工学研究科材料工学専攻

Hirofumi Wada

Department of Materials Science and Engineering, Kyoto University

1. はじめに

近年,MRIを代表とする超伝導マグネットの普及などによって,低温の需要がますます高まっている.最近では超伝導ケーブルによる送電実験といった新たな低温利用技術も話題になっている.LTM センター誌の前身である極低温研究室月報の77号では,新庄輝也氏(京大名誉教授)が21世紀の低 温科学を展望しておられる[1].新庄氏はその中で,磁気記録媒体を低温にすると,記録密度の限界が2桁向上する可能性を指摘している.このように低温の利用は今後もますます増大しそうであるが,ここで注意すべきことは,冷凍は必ず排熱を伴わなればらないということである.すなわち,われわれは低温を利用すればするほど,地球の温暖化を促進しているわけである.ここにエネルギー効率が高く,省エネルギーの冷凍技術を開発する必要性が生じてきた.このような意味から,近年注目を集めているのが磁気冷凍である.磁気冷凍は次節で述べるように,磁性体の磁気熱量効果を利用した冷 凍技術であるが,エネルギー効率が高いこと,コンプレッサが不要で動力が少なくてすむため,省エネルギーを図ることができる点が長所である.また,フロンなどを用いないので,環境にやさしい冷 凍法であるとも云われている.本稿では磁気冷凍研究の現状を紹介し,最近われわれが見出した物質を中心として,磁気冷凍によって低温を生成するための物質の科学について解説する.

2. 磁気冷凍の原理

本誌の読者にとっては釈迦に説法であるが,まず磁気熱量効果の説明をしよう.図1 (a)は常磁性体のエントロピーの温度変化の模式図である. A の状態で磁性体に磁場 H_1 を加えると,磁気モーメントが配向するので,熱エネルギーによる乱れが減り,エントロピーは ΔS_M だけ減少する.また,断熱状態で磁場を取り除くと磁性体の温度は ΔT_{ad} だけ低下する.これが磁気熱量効果で, ΔS_M を(等温)エントロピー変化, ΔT_{ad} を断熱温度変化と呼んでいる.図1で0< H_0 < H_1 である磁場 H_0 を用い,aBcdのようにカルノーサイクルを作ると,よく知られた断熱消磁冷却になる.これは現在でも極低温領域で用いられている.より高温になると格子エントロピーが熱負荷になるので,気体冷凍のように蓄冷器(regenerator)を用いた冷凍サイクルが必要になる.蓄冷器とは低温部と高温部をつなぐ熱交換器のことである.現在最も有望であると考えられているのは,磁気冷凍材料が蓄冷器の役割を兼ねた能動的蓄冷器(active magnetic regenerator:AMR)とよばれる方式の磁気冷凍機である.図2(a)にAMR型磁気冷凍機の原理を示す.この冷凍機はAMRベッド,磁場,熱交換器,およびディスプレーサーで構成されている.AMR ベッドとは磁気冷凍材料の微粒子を詰めたユニットのことで,この中をガス

や液体などの熱交換流体が通る仕組みになっている.この冷凍機は(1)熱交換流体が低温側にある状態で AMR を断熱磁化して温度を上げる,(2)ディスプレーサーを移動させて熱交換流体を低温側から高温側に移す,熱交換流体は AMR から熱を受け取り高温側熱交換器で排熱する,(3) AMR を断熱消磁して温度を下げる,(4)熱交換流体を高温側から低温側に移す,熱交換流体は AMR によって冷却され低温用熱交換器で吸熱する,という冷凍サイクルで運転される.その結果, AMR と熱交換流体の温度プロファイルは図2(b)のようになる.

図1 磁性体のエントロピーの温度依存性の模式図.(a)は常磁性体の場合,(b)は一次転移物質の場合.

図 2 (a) AMR 型磁気冷凍機の構造.(b) AMR ベッドと熱交換流体の温度プロファイル.

1998 年に米国 Astronautics 社の Zimm らは AMR 型の室温磁気冷蔵庫を発表した[2]. この磁気冷蔵 庫は磁気冷凍材料に Gd を用い,熱交換流体には水を使用している.彼らは 5T の超伝導マグネットの 中で2本の AMR ベッドを交互に移動するという方法で,室温で600W もの冷凍能力を得て磁気冷凍 機のエネルギー効率の高さを実証した.この冷凍能力は家庭用の大型冷蔵庫のそれの3倍に相当する. さらにZimmらは2001年に永久磁石を用いた磁気冷蔵庫を発表している.日本でも中部電力(株)と(株) 東芝の共同グループが同じようなAMR型の磁気冷凍機を試作している.最新の報告では,回転する 永久磁石の周りに4組のAMRベッドを配置し,磁場の変化を繰り返し与えるというシステムで,室 温から0 以下まで温度を下げることに成功している[3].永久磁石の磁場は0.76 Tで,各AMRベッ ドは3種類のGd系合金を直列につないで用いており,熱交換流体は水+アルコールである.

3. 巨大磁気熱量効果

上述のように,磁気冷凍のシステムは着実な進歩を遂げているが,冷凍能力を左右するのは磁性体の磁気熱量効果である.したがってより大きな磁気熱量効果を示す物質の開発が求められている.筆者はかつて希土類と Co のラーベス相化合物が示す,フェリ磁性から常磁性への一次転移の研究を行っていたが,その過程で,このような物質は潜熱を持つので磁気熱量効果が大きくなる可能性があることに気がついた.図1(b)に一次転移を示す磁性体のエントロピーの温度変化を示す.よく考えてみれば,気体冷凍の原理は理想気体の断熱膨張であるが,実際に用いられているのは気化熱である.同じことを磁気冷凍に当てはめてみれば,一次転移物質を利用するのは当然のことのように思われる.このような考えから ErCo₂の磁気熱量効果を調べたところ,30~50 K の温度領域で磁気熱量効果が非常に大きいことを見出した[4].1997年、米国 AMES 研究所の Percharsky と Gschneidner, Jr.は Gd₅Si₂Ge₂が室温で非常に大きな磁気熱量効果を示すことを報告した[5].この物質のΔS_Mの最大値は,実用材料として用いられている Gd のほぼ 2 倍に達し,彼らはこれを巨大磁気熱量効果と呼んだが,実はこの物質は強磁性から常磁性への一次転移を示す物質だったのである.そこでわれわれも室温付近にターゲットを絞り,磁気熱量効果の研究を始めた.図1(b)からわかるように,一次転移物質が大きな磁気熱量効果を示す条件は,

1) ゼロ磁場のキュリー温度 Tc における磁気エントロピーの変化が大きいこと,

2)磁場中でもシャープな一次転移が保たれていること,

3) T_cの磁場依存性が大きいこと,

である.このような観点から種々の一次転移物質を検討した結果,われわれは MnAs_{1-x}Sb_xが巨大磁気 熱量効果を示すことを見出した.

4. MnAs_{1-x}Sb_xの巨大磁気熱量効果[6,7]

六方晶 NiAs 構造をもつ MnAs は飽和磁気モーメント 3.4 μ_B /Mn, T_C =317 K の強磁性体である. T_C での転移は結晶構造の変化を伴う一次転移で,常磁性では MnP 型に格子が歪む.さらに高温では再び NiAs 構造に戻る.この物質は古くから実験・理論の両面で詳細な研究が行われている.先の大きな磁気熱量効果を示す条件を吟味してみると,1) MnAs の T_C におけるエントロピージャンプは 32 J/K kg である.この値は Mn のモーメントを S=3/2 の局在モーメントとしたときの全エントロピー $R\ln(2S+1)=11.5$ J/K mol の 35% であり, T_C が室温以上であることを考えると非常に大きい.2)MnAs は六方晶であるが,遷移金属磁性体であるため磁気異方性が比較的小さい.このため,多結晶でも磁場中でもきわめてシャープな相転移を示す.3) 磁場による T_C の上昇率は 4K/T ほどと大きく,大きな T_{ad} が期待できるということがわかった.図3 に MnAs のいろいろな磁場における S_M の温度依存性を示す.ここで S_M はマックスウェルの関係式,

$$\Delta S_{\rm M} = \int_{0}^{H} \left(\frac{\partial M}{\partial T}\right)_{H} dH \qquad \dots \dots \qquad (1)$$

より磁化の温度変化から求めている.また,一般に S_M はマイナスの量なので,ここでは絶対値で示している.MnAsの| S_M |は315 K で鋭い立ちあがりを示し,ピークをとった後に減少する.| S_M |のピーク値は32 J/K kg 程度である.この値は Gd₅Si₂Ge₂のそれのほぼ2倍にあたり,室温の磁気熱量効果としては極めて大きい.磁場が大きくなると S_M のピーク値はほとんど変わらないが,その温度幅だけが増加する.これは一次転移の特徴であり,磁場中においてもシャープな一次転移が保たれていることを示している.図4には MnAsの T_{ad} の温度依存性を示す. T_{ad} はピーク値もピーク幅も磁場に依存する.5Tの磁場による T_{ad} の最大値は13 K であるので,1 T あたりに直せば2.6 K である.この値は Gd₅Si₂Ge₂の3 K/T には少し及ばないものの,磁気冷凍材料の目安といわれる2 K/T より十分に大きい.これらの結果から,MnAs は巨大磁気熱量効果を示す物質であると結論してよさそうである.

ところで,室温磁気冷凍材料への応用を考えると,磁気熱量効果が大きい温度領域を,室温の上から0 以下までコントロールする必要がある.また MnAsの一次転移は約6Kの幅の温度ヒステリシスが観測されているが,これは磁気冷凍材料にとっては都合が悪い.そこでわれわれは Asの一部を Sb で置換した MnAs_{1-x}Sb_xの磁気熱量効果を調べた.Sb を置換すると,NiAs 構造が安定化し,構造相転移が抑えられる.また, $T_{\rm C}$ は最初 xの増加に伴って降下し,x=0.4 で極小値 210 K をとった後,x の増加とともに上昇することが知られている.面白いことに,構造相転移が消失しても,一次転移的な性質は残っている.図5に MnAs_{0.85}Sb_{0.15}の $T_{\rm C}$ 近傍での磁化曲線を示す. $T_{\rm C}$ =260K以上の温度では,磁化曲線はメタ磁性的な振る舞いを示しているが,これは磁場によって常磁性から強磁性状態が誘起されたものである. MnAs_{1-x}Sb_xの磁場 5T における| $S_{\rm M}$ の温度変化を図6に示す.比較のためにGd₅Si₂Ge₂の| $S_{\rm M}$ も実線で示した.一次転移的な性質が保たれているため,x≤0.3の| $S_{\rm M}$ は依然とし

て大きく, Gd₅Si₂Ge₂のそれを大きく上回っている.このように MnAs_{1-x}Sb_xは 220-320K の範囲で大き な磁気熱量効果を示す系であり, 室温の磁気冷凍材料として有望であることが明らかになった.

図 5 MnAs_{0.85}Sb_{0.15}の T_C近傍での磁化曲線.この図 は磁化温度曲線の測定から求めたものである.

筆者は MnAstrySbrの巨大磁気熱量効果の発見の意義は2つあると考えている.ひとつは一次転移物 質が巨大な磁気熱量効果を示すことを実証したことであり,もうひとつは,希土類元素を含まない遷 移金属の化合物が磁気冷凍材料の候補になりうることを示したことである.従来の磁気冷凍材料は希 土類元素を含んでいることが必須であった.これは希土類の持つ大きな磁気モーメントによるエント ロピーを利用しようとしたものであるが,同時に希土類元素は大きな磁気異方性を示すという難点が ある、磁性体を微粒子にして用いる AMR ベッドでは、異方性が大きいと、磁場をかけたとき転移が ブロードになってしまう.このため,いままでは磁気異方性の小さい Gd の化合物を用いるか,ある いは対称性の高い立方晶の化合物を利用するしかなかったのである。これに対して遷移金属化合物は, 一般に磁気異方性が小さいので,磁気熱量効果が大きければ磁気冷凍材料としては扱いやすい.われ われの結果は磁気冷凍材料の選択肢が広がったこと意味している.遷移金属のスピン量子数Sは希土 類元素の全角運動量の量子数Jよりも小さいので,全エントロピーRln(2S+1)は小さい.それにもかか わらず大きな磁気熱量効果を示すのは、遷移金属化合物の交換相互作用が希土類化合物のそれより一 般に強いからである. 交換相互作用の強さは,二次転移のキュリー温度Tc'で評価される.一次転移 物質ではもちろん Tc'は観測されないが,低温での磁化温度曲線を外挿することによって大雑把に見 積ることができる . MnAs の場合は T_C' 450~500K であり,これに比べて一次転移温度 T_Cは 317K と 低い.このことはT_C以下で解放されている磁気エントロピーが少ないことを意味している.そのため $T_{\rm C}$ における磁気エントロピーのジャンプが大きくなり,結果的に大きな $S_{\rm M}$ を与える.したがって一 次転移による磁気熱量効果を室温で実現させるという意味では, 遷移金属化合物のほうが本質的に有 利である 実際 本研究の後に室温で大きな磁気熱量効果を示す物質として見出された La(Fe1,Si,)13[8] や MnFeAs_{0.45}P_{0.55}[9] はいずれも遷移金属ベースの化合物である.

5. MnAs_{1-x}Sb_xの T_cの組成依存性

MnAs」、Sb、の巨大磁気熱量効果の起源はこの物質が示す一次転移である.特に Sb を置換したときは 構造相転移を伴わない一次転移が生じる.この転移については,従来二次転移的であるといわれてき たが、最近磁場中のX線回折実験を通して、われわれはMnAs1-xSbxの転移が一次であることを突き止 めた.しかし,この一次転移の起源についてはまだ明らかになっていない.バンド計算では NiAs 構 造をもつ MnAs は遍歴電子メタ磁性体の特徴を有していないことが報告されている[10]. 一次転移の 起源を明らかにするため,現在も実験・理論の両面から活発な研究が行われている.最近の結果を一 つだけを紹介しておくと、MnAs に Sb を置換したとき、T_Cが下がる原因が次第に明らかになりつつあ る.図7は, $MnAs_{1,x}Sb_x$ の T_C の組成依存性である[7,11].すでに述べたように T_C はxの増加とともに 最初降下し, x=0.4 付近で極小値をとった後に増加する. MnSb は MnAs の低温相と同じ NiAs 構造を 持つが , その T_Cは 600 K くらいである . また Sb は As と同族であり , しかも原子半径が大きい . 金 属磁性体では,格子間距離の増大はバンド幅の減少を招く.このため状態密度が増加して強磁性を安 定化されるので, Sb を添加して $T_{\rm C}$ が上昇するのは容易に理解できる.問題はなぜ最初に $T_{\rm C}$ が降下す るかである.この理由は今までよくわかっていなかったが,どうやら過剰に入った Mn 原子が原因と なっているようである.図 8 に NiAs 型構造の単位格子を示す.純粋な NiAs 構造では Mn は図の白丸 の位置にしか入らない.ところで状態図によると NiAs 構造の MnSb は化学量論組成では存在せず, Mn_{1+δ}Sb(δ~0.1)の形で生成する.このときの過剰の Mn は図8の二重丸の位置を占めると考えられ ている[12]. この過剰な Mn 原子は正規のサイトの Mn の磁性を弱めることが報告されている[13]. 同 じことが MnAs_{1+x}Sb_xでも起こっていると考えれば, T_Cの降下は説明される.われわれの結果から,化 学量論組成で MnAst.,Sb,を仕込むと必ず Sb が析出することがわかってきた . 単相にするには Mn を 少し過剰に入れなければならない.これは化学量論組成の MnAs_{1-x}Sb_xでは Sb 近くの二重丸のサイト に Mn が入るために, Mn が足りなくなって Sb が析出することを示唆している.この過剰な Mn が全 体の磁性を弱めるから,T_Cが下がると考えられる.Sbの量が増えると,やがて過剰サイトの Mn が飽 和に達し、その後は $T_{\rm C}$ が上昇するとすれば、 $MnAs_{1,x}Sb_x$ での $T_{\rm C}$ の組成依存性は無理なく説明される.

6. おわりに

本稿では磁気冷凍の現状とわれわれが見出したMnAs_{Lx}Sb_xの巨大磁気熱量効果について解説した. ー次転移物質の特徴は弱い磁場でも大きな磁気熱量効果が得られることである.ただし,通常の二次 転移物質に比べればその温度範囲は狭い.実用化を考えた場合,弱い磁場で磁気熱量効果が大きいと いうことは永久磁石を用いる場合に有利である.また,AMR 型磁気冷凍機では磁気冷凍材料そのも のに温度勾配がつくので,温度範囲が狭いということはあまり問題にはならない.それぞれ最適温度 の異なる磁気冷凍材料を積層化すればよいからである.このように一次転移物質はAMR 型磁気冷凍 機の磁性材料としては本質的に優れている.最近試作されている磁気冷凍機は室温で作動するものが 多いが,現在米国や日本で磁気冷凍がもっとも有力であると考えられているのは水素の液化である. 水素はクリーンエネルギーデバイスとしてますます需要が高まっており,日本でも水素ステーション が各地に誕生しているほどである.水素の貯蔵・運搬には液化するのがもっとも有利であるといわれ ているが,現在水素の液化に用いられているジュール・トムソン効果はエネルギー効率が低いという 問題がある.磁気冷凍は新しい水素液化法としても注目されており,今後は室温から 20K までの巨大 磁気熱量効果物質の開発が必要になってくると考えられる.

本稿で述べた研究は,大学院生の田部雄治,谷口賢太郎,森川貴博諸氏との共同研究である.なお, S_Mの測定には,細かい磁場ステップで,詳細な磁化の温度変化をとる必要があるが,この測定には LTM センターに設置されている SQUID に負っているところが大きい いつも SQUID を使わしていた だいている LTM センターにもお礼を申し上げたい.

図7 $MnAs_{1x}Sb_x$ のキュリー温度 T_C の組成依存性.

参考文献

- [1] 新庄輝也, 京都大学極低温研究室月報 77, 22 (2000).
- [2] C. Zimm, A. Jastrab, A Sternberg, V. Pecharsky, K. Gschneidner, Jr., M. Osborne and I. Anderson, Adv. Cryog. Eng. 43, 1759 (1998).
- [3] 中部電力(株)ホームページ, http://www.chuden.co.jp/press/data/pre2002/pre0303_01.html
- [4] H. Wada, S. Tomekawa and M. Shiga, Cryogenics, 39, 915 (1999).
- [5] V. K. Pecharsky and K. A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).
- [6] H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).
- [7] H. Wada, K. Taniguchi and Y. Tanabe: Mater. Trans. 43, 73 (2002).
- [8] A. Fujita, S. Fujieda, K. Fukamichi: Y. Yamazaki and Y. Iijima:Mater.Trans., 43, 1202 (2002).
- [9] O. Tegus, E. Bruck, K. H. J. Buschow and F. R. de Boer: *Nature*, **415**, 150 (2002).
- [10] T. Goto, M. I. Bartashevich, K. Kondo, K. Terao, H. Yamada and H. Ido, J. Alloys Comp. 325, 18 (2001).
- [11] H. Ido, S. Yasuda, M. Kido, G. Kido and T. Miyakawa, J. Phys. (Paris) Collog. 49, C8-167 (1988).
- [12] I. Teramoto and A. M. J. G Van Run, J. Phys. Chem. Solids 29, 347 (1968).
- [13] Y. Yamaguchi, H. Watanabe and T. Suzuki, J. Phys. Soc. Jpn. 41, 703 (1976).

共同利用実験室・実験装置の紹介

低温物質科学研究センターには,共同利用のための実験室および共同利用装置があります.本号ではその一部をご紹介致します.まずヘリウム液化棟の2階には SQUID(超伝導量子干渉素子)を用いた精密磁気測定装置を利用する実験室があり,1階にも実験室が2室あります.共同利用実験室はこの他,理学研究科1号館(8室)・5号館(2室),本部構内(1室)にもあります.そして共同利用装置としては上記の SQUID 精密磁気測定装置の他に超伝導マグネットシステムなどがあり,その一部は宇治キャンパスにも配備されています.これらは年度始めの利用申請に基づいて,本センターに関わる研究に利用されています.これら共同利用実験室での研究成果については本誌で順次,ご紹介する予定です.

(1) 低温物質科学研究センター液化棟2階

SQUID(超伝導量子干渉素子)を用いた 精密磁気測定装置が2台あり(1台はセン ターの共同利用装置),毎月の利用者会議 での利用計画に基づいて6研究科にわた る,17を数える研究室の研究に活発に利 用されています.特に電子メールによるユ ーザー間の連絡が密に行われており,装置 の利用に関する案内だけでなく,低温技術 やその他の研究情報の交換の場となって います.

(2) 理学研究科1号館地下

ここには000 号室から007 号室まで8部屋あり,元来はLTM センターの前身(の片側)であった「機器分析 センター」に所属していました.そのような歴史的な経緯もあり,多くの実験室は,化学教室の研究室が使用し ています(ただし,平成16年度春の化学教室の移転に伴い,事情は異なってくる予定です).また,006 号室, 007 号室のように,LTM センターのもう一つの前身である「極低温研究室」の実験室を共同利用していたが, LTM センター設立後,LTM センターのセンター長室・会議室の設置,新液化機の導入などのために,旧極低温 研究室から,この旧機器分析センター側の実験室に移転し使用されている実験室もあります.

以下に,それらの使用状況を報告します.

000 号室:量子固体のレーザー分光実験(化学教室・分子分光学研究室)
001 号室:生体高分子のレーザー分光実験(化学教室・光物理化学研究室)
002 号室:NMR・X線回折による機器分析実験(化学教室有機系研究室)
003 号室:タンパク質の構造解析(化学教室・生物構造学研究室)
004 号室:様々な分子のNMR分光実験(化学教室・分子構造研究室)
005 号室:質量分光分析実験(化学教室・有機科学系研究室)

006 号室:有機導電性化合物の物性化学実験(化学教室・有機物性学研究室) 007 号室:強相関系遷移金属化合物のNMR・NQRによる物性化学実験 (化学教室・金相学研究室)

下図は,007室の全様とNMR実験中の写真です.

(3)理学研究科5号館(物理学教室)地下 共同利用の17テスラ超伝導マグネット システムを中心に,現在は理学研究科の物 理学専攻と化学専攻の研究室が,2つの実験 室を超伝導や磁性の研究に利用していま す.

(4)宇治キャンパス・極低温物性化学実験室1階(実験室) 当センター宇治キャンパスでは,平成14年度に化学研究所より移管された平成3年度購入のSQUID磁束計(Quantum Design MPMS-5)を,共同利用装置として管理・運営しています.装置仕様は,磁気モーメント感度1×10⁻⁶~3×10² emu, 最大印加磁場5T,測定可能温度範囲2~400K(専用炉使用時は~800K)で,磁気抵抗効果測定オプションが付いています.利用者には液体ヘリウム代(1日あたり10Lとして半日単位で計算)を負担していただいております.利用御希望の方は,低温物質科学研究センター・宇治キャンパス・壬生(内線: 宇治3108)または化学研究所・極低温物性化学実験室・楠田(内線:宇治4357)まで御連絡願います.

技術ノート

技術ノート「一軸性ひずみ下での低温物性測定」 The Low Temperature Physical Property Measurement under the Uniaxial Strain

前里光彦

京都大学大学院理学研究科 Mitsuhiko Maesato Graduate School of Science, Kyoto University,

1. はじめに

固体電子物性,とくに多彩な電子状態を示す興味深い電子系を理解するためには、その結晶構造や 電子構造と電子状態との関係を詳細に調べることが重要であることは言うまでもない.しかしながら、 物質の結晶構造を自由に制御することは一般に非常に難しい事である.物質構造を物理的に制御する 方法としてよく行われているのは、静水圧を印加する方法である.しかし、この方法では構造の異方 性を意図どうりに制御する事は出来ない.異方性を制御する方法としてよく知られているのは一軸性 応力を加える方法である.ほとんどの物質は一軸性の応力を印加されると、応力方向へ縮むと同時に それと垂直方向へ膨らむ.後者はいわゆるポアソン効果である.一軸性応力の方法は、応力方向の格 子定数とそれに垂直方向への格子定数の比が物性を支配している場合には、有効な手段である.しか し、そのような単純な場合以外には、ポアソン効果のせいで、どの格子定数の変化が物性変化に本質 的な影響を与えているのか分かりにくくなる.もし、任意の一方向にのみ格子を変形させる事が出来 れば、電子物性の詳細な研究にとって非常に有効であろう.このような動機から、我々は一軸性ひず みを加える方法の開発に取り組んだ.本稿では、分子性導体のように柔らかい弾性特性をもつ物質に 一軸性ひずみを加えて電気伝導度測定を行う方法 [1,2] について紹介する.

2. 一軸性ひずみ発生の原理と方法

上述のように、試料に対し一軸性応力を印加すると、応力と垂直方向への膨らみ(ポアソン効果)が 生じる.よって、試料に生じるひずみを一軸性にするためには、このポアソン効果を抑制する必要が ある.そこで我々が考案したのは、試料をエポキシ樹脂のような固体の圧力媒体に埋め込み、それが 横に膨らまないように樹脂全体を硬いシリンダーの中に入れて加圧するという方法である.この方法 では樹脂には明らかに一軸性のひずみが発生する.試料にも同様の一軸性ひずみが発生するためには、 圧力媒体の弾性特性が試料のそれと良く似たものであることが重要である.我々は圧力媒体としてス タイキャストというエポキシ樹脂あるいは凍結固化したオイルを用いる方法を開発した.前者を「エ ポキシ法」、後者を「固化オイル法」と呼んでいる.これらの方法では試料を加工する必要がないため、 任意の方向にひずみを加える事が容易に出来る.また、圧力媒体が試料を保護してくれるため、分子 性導体のように柔らかい試料も破壊する事なく、かなりの高圧を加えることが出来る. 2-1 エポキシ法

ここでは、圧力媒体としてエポキシ樹脂を使う方法の詳細について説明する.まず、真鍮製の円柱 型プラグにフィードスルーから銅線を通したものを用意し、銅線の先に結晶試料をとりつける(図1 (a)). 電極としては、15~20 µm の金線をカーボンペーストで取り付けており、この金線で試料は支 えられる、その後、ワニスやエナメルで電極をつけた試料を薄くコーティングする、これは、直接ス タイキャストと接触することによって試料表面や電極部分が劣化するのを防ぐためである. コーティ ングが終わった段階で、結晶試料の配向を決めておく必要がある、次に、この試料を取り付けたプラ グをシリンダーと同じ内径をもつ円筒状の鋳型にいれ、試料を包むようにエポキシ樹脂を流し込む (図1(a)). エポキシ樹脂としては、スタイキャスト 1266 を使用した. スタイキャストは使用前に 軽く脱気して気泡を取り除いてから使用し、常温で硬化させている.また、鋳型はテフロンやジュラ コン(金属に似た特性を持ち柔軟性をもつアセタール樹脂)などを加工して作った。後者のほうが、工 作しやすく便利である.スタイキャストが硬化後に円筒状に成型されたエポキシ・試料を取り出して、 ピストンと接触するエポキシの上端面を平らに整形する. スタイキャスト 1266 は透明なので、 試料の 配向のチェックは容易に出来る. 最後に、このエポキシ・試料を BeCu 製ピストンシリンダー型圧力セ ルに入れてピストンを加圧する(図1(b)). この方法の最大の利点は、比較的容易に出来るという事 である. また. 加圧後にピストンをバックアップネジでクランプする事で. 加圧装置と切り離して測 定出来るので、例えば低温磁場中で圧力セルを自由に回転させる事なども可能である、しかし、一度 埋め込んだ試料を取り出して再利用する事が出来ないという欠点もある

図1 (a) 電極のついた試料をエポキシ中に埋め込む様子. 円筒状の鋳型に試料を取り 付けたプラグを入れ, 上からエポキシを流し込む. (b) BeCu 製ピストンシリンダー型 圧力セルにエポキシ・試料を入れて一軸性ひずみを加える様子.

2-2 固化オイル法

この方法には通常の静水圧実験で使用する圧力セルをそのまま使用する.通常の使用法と異なるの は、圧力媒体であるオイルが凍結固化する低温で圧力セルを加圧するという点だけである.圧力媒体 が液体であれば静水圧が発生するが、固化してしまえば一軸性ひずみが生じるというわけである.こ の方法では、圧力セルを低温で加圧する装置が必要となる.我々は、図2のような低温加圧装置を作 製した.装置上部には小型の複動式油圧シリンダーが取り付けてあり,油圧ポンプから油圧を加える 事によって,ピストンロッドを上下に稼動できるようになっている.試料が入っている小型圧力セル は装置下部のBeCu製シリンダー内にセットされる.小型圧力セルの内径は3.2 mmで油圧シリンダー の内径は32 mmのものを使用しているので,油圧シリンダーに加えた圧力の100倍の圧力が圧力セル 内の試料に加えられる.我々は,外径10.5 mmのステンレス製ガイドと直径7 mmのステンレス製の ピストンロッドを使用した.試料への圧力は約10 kbar程度まで印加可能である.また,この装置を トップロード型の³He 冷凍機に入れて使用することで,約0.5 K の低温まで実験することが出来た.

ちなみに, 我々が使用した DEMNUM というオイルは約 100 K 以下では固化しているので, それより十分低温で圧力 を加えている.

図 2 低温加圧装置の概要図. BeCu 製シリンダー 内に小型圧力セル(外径 12 mm,内径 3.2 mm)を 収納し、この部分を低温に下げる.装置上部にあ る油圧シリンダーからの力をピストンロッドで試 料に伝えている.圧力媒体は、オイル以外にもエ ポキシなども使用できる.

3. 実験結果

まず、実際に一軸性のひずみが生じる事をひずみゲージを使って確認した[1,2]. 試料の代わりに ひずみゲージを埋め込んで、外部から印加した圧力に対するゲージの抵抗変化を測定した.抵抗変 化 R/R とゲージのひずみ ε (= L/L) との関係は、

R/R = ε K であり, K はゲージファクターと言われるゲ ージ固有の定数である.我々が使用したひずみゲージ(共 和電業製の KFL-02-120-C1-16 または KFEL-2-120-C1)の 場合,通常の使用方法(被測定物に貼り付ける方法)だ と K = 2 である.我々は通常と異なる使用法をしている ため,Kの正確な値は分からないが,K は 1 から 2 の間 であると考えられる.固化オイル法での結果を図 3 に示 す.室温の静水圧下では,ひずみゲージの抵抗変化はゲ ージの向きに依らない.それとは対照的に4 K の低温で は,ひずみゲージの向きを外部からの圧力と平行方向 に置いた場合,抵抗は大きく減少するが,ゲージを圧 力方向と垂直方向にセットすると抵抗はほとんど変化 しない.これは,圧力方向と平行方向には大きなひず みが生じているが,圧力方向と垂直方向へのひずみは 小さいという事を意味している.これらの結果から,

図 3 外部から加えた一軸性圧力に対する ひずみゲージの抵抗変化.平行および垂直 とは、外部からの圧力の方向に対するゲー ジの向きを表している.圧力媒体は DEMNUM. 実際にひずみが一軸性であることが確認できた.

我々はこの一軸性ひずみの方法を使って, α-(BEDT-TTF)₂MHg(SCN)₄ [M=K, NH₄]とN う有機伝導体の物性制御を試みた[3]. この物 質は, BEDT-TTF という分子の作る二次元伝 導層と陰イオンの作る絶縁層が交互に積層し た構造をしている.両塩は結晶構造がほぼ等 しいにもかかわらず,低温の電子状態が全く 異なっており,K塩は約8K以下で一次元フ ェルミ面部分のネスティング不安定性によっ て密度波状態[4]となり,一方NH₄塩は約1K 以下で超伝導状態になる.この物性の違いの 起因を調べるために,固化オイル法を用いて 一軸性ひずみ下での電気伝導度測定を行った. 常圧下で超伝導となるNH₄塩の場合,伝導面 内の *c* 軸方向へ一軸性ひずみを加えると転

図 4 常圧および *a* 軸ひずみ (2.5 kbar)下における α-(BEDT-TTF)₂NH₄Hg(SCN)₄の磁気抵抗の磁場角度依 存性.磁場は伝導面に垂直方向(θ=0)から *a* 軸方向 へ回転している.矢印は、特徴的なピーク(常圧)お よびディップ(2.5 kbar)の位置を示している.

移温度が6Kまで上昇し、その後下降する振る舞いが観測された.次に、伝導面内の a 軸方向へ一軸 性ひずみを加えると、今度は超伝導が単調に抑制されたあと、K塩と同様の密度波相が約10K以下で 出現した.これがフェルミ面のネスティング不安定性に起因したものである事は、エポキシ法によっ て低温磁場中で磁気抵抗の磁場角度依存性を測定する事によって明らかになった.その結果を図4に 示す.一軸性ひずみ下でも明瞭な角度依存磁気抵抗振動が観測されており、フェルミ面の再構成によ って振動のパターンが劇的に変化している事が分かる.より詳しい解析は文献[3]に述べている.a 軸 方向へさらに大きなひずみを加えると密度波相は抑制され、ノーマルな金属相が出現した.これらの 結果は、伝導面内の格子定数の比 c/a が電子物性を支配する重要なパラメターであることを示してい る.また、K塩における一軸性ひずみ下での伝導度測定も同様に行い、その電子状態の変化も c/a を パラメターとする相図によく当てはまる事が分かった(図5).

図 5 α-(BEDT-TTF)₂MHg(SCN)₄[M=K, NH₄]の統一相図. K 塩および NH₄-塩は常圧下では点線の矢印で 示す位置にあり,一軸性ひずみにより左右の矢印の方向へ電子状態が変化する.

このように電子状態がひずみを加える方向によって劇的に変化する事が分かった.では、試料の結 晶格子には実際に一軸性ひずみが生じているのであろうか?それを調べるために、一軸性ひずみ下で の X 線結晶構造が鹿児島、近藤らによって行われた[5].図6に室温でエポキシ法により、一軸性ひず みを加えた時の格子定数の変化を示す. 圧力を加える方向に若干依存するものの, ひずみがよい一軸 性をもっている事が分かる. なお, 電子物性との関係などの詳細については文献[5]を参照されたい.

図 6 エポキシ法を用いて室温でα-(BEDT-TTF)₂NH₄Hg(SCN)₄の*a*軸方向(a)および*c*軸方向(b) に一軸性ひずみを加えた時の格子定数の変化率.

以上では、分子性導体に対して一軸性ひずみ下での電気伝導度測定を行う方法について紹介した. 一軸性ひずみ法は、電子物性の変化と格子定数の変化との関係を明瞭に出来るため、電子物性の精密 な研究に役に立つばかりでなく、新規な電子状態を発見するのにも有効な手段であるといえる.特に エポキシ法は比較的簡単に行うことが出来るという利点をもっており、実際に他のいくつかのグルー プでもすでにこの方法を用いた物性測定が行われている.今後の課題としては、電気伝導度測定以外 のいろいろな物性測定方法の開発という事があげられる.最近では SQUID 磁束計に入れる事の出来 るクランプ式圧力セルが市販されており、それを用いて一軸性ひずみ下での磁化率測定を行うことも 可能となっている.しかし、バックグラウンドの影響が大きいため、それを減らす工夫をしていく必 要がある.また、NMR や低周波 ESR などの測定も可能であろうし、光学測定も圧力セルのシリンダ ーやピストンを工夫すれば、一部の波長領域では可能であろう.また、試料と弾性特性の近い圧力媒 体を選択することによって、一軸性ひずみの方法は分子性導体以外のいろいろな物質にも適用できる であろう.

最後に、ここで紹介した一軸性ひずみ法の開発は、筆者が東京大学大学院在学中に鹿児島誠一教授 のご指導の下で行ったものです.共同研究者である同教授および近藤隆祐助手に感謝致します.

参考文献

- [1] M. Maesato, Y. Kaga, R. Kondo, S. Kagoshima, Rev. Sci. Instrum. 71 (2000) 176.
- [2] 鹿児島誠一, 前里光彦, 加賀保行, 近藤隆祐, 日本物理学会誌 第54巻 第12号(1999)969.
- [3] M. Maesato, Y. Kaga, R. Kondo, S. Kagoshima, Phys. Rev. B 64 (2001) 155104.
- [4] 電荷密度波かスピン密度波かは長い間謎であったが、X 線散漫散乱実験で超格子が観測されたと

いう報告が最近あったため、前者である可能性が高い. P. Foury-Leylekian, S. Ravy, J.-P. Pouget, H. Müller, Synth. Met. **137** (2003) 1271.

[5] R. Kondo, S. Kagoshima, M. Maesato, Phys. Rev. B 67 (2003) 134519.

サロン フロリダ・タラハシ・米国国立高磁場研究所滞在記 Stay at National High Magnetic Field Laboratory in Tallahassee, Florida

中辻知

京都大学大学院理学研究科 Satoru Nakatsuji Graduate School of Science, Kyoto University

私はこの2年間、アメリカ合衆国のフロリダ州タラハシにある国立高磁場研究所に日本学術振興 会・海外特別研究員として滞在させていただいた。受け入れて下さったのは、重い電子系の開拓者の一 人、Zachary Fisk 教授である。同教授は UPt₃, UBe₁₃, CeMIn₅(M=Co, Rh, Ir)等、数多くの重い電子系超伝導 体を発見し続けて来られた。

タラハシはフロリダ州の北端に位置し、ジョージア州から 100 キロメータくらいのところにある. とはいっても夏の猛暑はさすがのもので、気温も日差しも全く南国である.フロリダ半島南端にある マイアミほどではないけれど、ところどころに椰子の木も生い茂り、南国特有のスペイン苔が木々に 覆い被さっている(下写真参照).州都とフロリダ州立大学がこの町の最も大きなシステムで、町の住 民の3割は学生、被雇用者のうち教育関係者は1.5割、2.5割は州関係者だと聞いている.人口は15万 人が京都市と同じくらいの面積に住んでいるので、人口密度は10分の1ということになる.人々が 広々と暮らしている様子は、初めて飛行機からこの町を見下ろしたときに、辺り一面に広がる森から も明らかであった.州都というのにダウンタウンを思わせる高層ビルはほとんどなく、家々は、生い 茂る高い木々の中に建てられており、その中にすっぽり埋まっているという感じであった.

研究所も敷地内にゴルフコースのある広大な森の中にある.国立高磁場研 究所ということで3分の1は共同利用施設,次の3分の1は高磁場設備開発 施設,残りの3分の1は常任の研究者の施設である.研究者には錚々たるメン バーを有している.Condensed Matter/Theory研究グループには、ノーベル物理 学賞受賞者の Robert Schrieffer 氏,超伝導のAG理論で有名なLev Gor'kov 氏, 重い電子系の開拓者のひとりZachary Fisk 氏,さらには、マンガン酸化物系の 理論で知られる Elbio Dagotto 氏らが所属しておられた.

この研究所の良いところの一つは、とても開放的ということ.例えば、実験室も大部屋を研究室ごとにパーティションで区切ってあるだけなので、隣の研究室の住民と毎日顔を合わせるので、いろいろと相談しやすい.

右写真:町のあちこちにあるキャノピーロード.

(キャノピーロードとは樹齢の高い樹木がつくる自然のアーケード) スペイン苔が木々の枝を覆っている.

3時のコーヒー&クッキーの時間には理論家達と顔を会わせて,話題の交換をすることができた.こ のような環境の中で,高磁場研究者のLuis Balicas 氏とのCeCoIn₅, (Ca,Sr)₂RuO₄, YbInCu₄, その他新物質 の共同研究も自然と始まった. Zachary Fisk 教授の歴代のポスドクは高磁場にあまり関わりがなかった ようで,ジョークで自分は所内でも高磁場施設に対してはクロマニョン人的存在だったんだが,と言 っていた.その Fisk 氏は,冒頭で述べたように,数々の新物質の発見で有名であり,米国科学アカデミ ーの会員等も務めておられる.既に62歳であるが,依然,週に何度かは自分で試料づくりをしてお られる.それだけに経験に裏打ちされた圧倒的と言うべき化学的センスにはいろいろと教わることが 多かった.一般に物性物理の中で結晶づくりの占める位置は大きいが,特に Flux 法を通しての単結晶 育成の楽しさと奥深さ,続々と見つかる新物質のなかから重要な物質系を開発することの重要性を Fisk 研での毎日の実験から学ぶことができた.

ところで、米国国立高磁場研究所は、研究技術者、設備、予算規模の意味で世界最高の高磁場研究所 である. その中でも、目玉の設備は何と言っても世界最高の45 テスラの定常磁場ハイブリッドマグネ ットである. これは、11 テスラの超伝導マグネットと34 テスラの水冷式のビッター型のマグネットを 組み合わせたもので、その使用する電力は莫大である. 例えば、34 テスラのビッター型マグネットだ けを動かすのに、研究所はタラハシ市から、32MWという電力を購入している. その量は市の総消費電 力(約 650MW)の5パーセントに登る量である. ビッター型のマグネットは、超高純度の冷却水のな かに浸された銅板に高電流を流すというもので、水質の管理と、その循環にも多くの費用がかかる. 45 テスラを平日5日間運転するのにトヨタカローラの新車数台が買えるような経費を使っていると聞き、 とても貴重に感じたのを思い出す. それだけに、マグネットタイムは世界中の研究者から申請され、 競争率が高い. 応募は Website: http://users.magnet.fsu.edu/に行くと詳細がわかるようになっているので ご参考になればと思う.

さらに、この研究所の強いところは、スタッフがマグネット設計グループ、管理グループ、そして、 ユーザーサポートグループから構成されており、サービスが充実していることである. 申請してマグ

ネットタイムを頂くごとに研究所の共同利用施設のユ ーザーサポートシステムには、大変お世話になった. 測定に必要なロックインアンプ等の計測器、ケーブル 類、真空部品等はすべて、わかりやすく十分なスペー スを持って仕分けられており、磁場施設で、測定のた めのセットアップがとてもしやすい形になっている. 私は、今後もこの自然豊かなタラハシの研究所を一ユ ーザーとして訪れ、自分たちで開発した物質の高磁場 現象を研究していくことを楽しみにしている.

上写真:米国国立研究所の玄関,右の建物はユ ーザーからの人気の高い 19 テスラマグネッ ト・希釈冷凍機の施設棟.2003 年 8 月、銅酸化 物高温超伝導体を用いた 25 テスラのマグネッ トを完成させている.

低温物質科学研究センター

セミナー報告

低温物質科学研究センタ - セミナ - 報告

日時: 2003年10月28日(火) 午後4時~5時30分

場所:理学研究科5号館 物理学教室439号室

講師:田山 孝 氏

所属:東京大学物性研究所・新物質科学研究部門

題目: Low Temperature Magnetization of the Heavy Fermion Superconductor CeCoIn5

要旨:

We present low temperature dc magnetization measurements on the layered structure heavy fermion superconductor CeCoIn₅ with $T_c=2.3$ K, revealing a first-order phase transition (FOPT) at the upper critical field H_{c2} for both H//a and c axes below $0.3T_c$ [1]. The M(H) data at 1.6 GPa for H//c still shows a clear FOPT at H_{c2} , although the superconducting condensation energy significantly decreases. We also found an unusual peak effect for H//c and the FFLO phase transition for H//a, which was recently observed in the specific heat measurements [2]. Possible physical mechanisms of the observed phenomenon will be discussed.

[1] T. Tayama et al., Phys. Rev. B65, 180504 (2002).

[2] H.A. Radovan et al., Nature **425**, 51 (2003).

日時: 2003年10月31日(金) 午前10時30分~12時

場所:理学研究科5号館 物理学教室439号室

講師: Prof. Collin Broholm

所属: Department of Physics and Astronomy, Johns Hopkins University

題目: Imaging the Quantum Interference of Cuprate Qnasiqarticles

要旨:

Magnetic materials generally develop long range order at temperatures similar to the characteristic spin-interaction energy scale. However, weak connectivity and competing interactions can suppress static spin order and give rise to qualitatively different strongly correlated states of matter. I shall discuss neutron scattering experiments that characterize such novel phases in illustrative model systems of varying complexity. The focus shall be on lattices of corner-sharing simplexes wherein the dominant interactions can be satisfied without long range order. La₄Cu₃MoO₁₂ for example contains a lattice of weakly interacting copper spin triangles [1]. Pulsed neutronscattering experiments show that inter-triangle interactions are satisfied through adoption of a Kramer's doublet ground state. A phase transition to long range order amongst the residual composite spin was detected at temperatures more than two orders of magnitude below the characteristic exchange energy. Quasi-two-dimensional SrCr_{9p}Ga_{12.9p}O₁₉ [2,3] and QS-Ferrite [4] both contain triangular latticelayers sandwiched between two kagomé lattices. Samples studied sofar do not achieve long range spin order at any

temperature. Instead there is local order within simplexes and the spin relaxation rate decreases with T until a spin freezing transition at a few percent of the Curie-Weiss temperature. $ZnCr_2O_4$ is a cubic lattice of corner-sharing tetrahedra with substantially more complex behavior. We show that tetrahedra that are connected to form hexagons develop fluctuating spin director degrees of freedom. This spin director paramagnet is however unstable towards a lattice deformation that relives frustration and enables long range spin order.

1. Y. Qiu, C. Broholm, S. Ishiwata, M. Azuma, M. Takano, R. Bewley, and W. J. L. Buyers, cond-mat/0205018.

- 2. S. H. Lee, C. Broholm, G. Aeppli, A. P. Ramirez, T. G. Perring, C. Carlile, M. Adams, and B. Hessen, Europhys. Lett. **35**, 127 (1996).
- 3. S.-H. Lee, C. Broholm, G. Aeppli, T. G. Perring, and B. Hessen, Phys. Rev. Lett. 76, 4424 (1996).
- 4. G. Gasparovic, S.-H. Lee, C. Broholm, and R. J. Cava, unpublished (2003).
- 5. S.-H. Lee, C. Broholm, W. Ratcliff II, G. Gasparovic, Q. Huang, T. H. Kim, and S.-W. Cheong, Nature **418**, 856 (2002).
- 6. S.-H. Lee, C. Broholm, S-W. Cheong, T.H. Kim, and W. Ratcliff II, Phys. Rev. Lett. 84, 3718 (2000).

日時: 2003年11月10日(月) 午後4時~5時30分

- 場所:理学研究科5号館 439号室
- 講師: Dr. R.A. Borzi and Dr. S.A. Grigera
- 所属: University of St. Andrews, Scotland, UK
- 題目: Quantum criticality and metamagnetism in the Ruthenate Sr₃Ru₂O₇

要旨:

Quantum criticality may provide a unified framework for understanding many facets of strongly correlated electron behaviour of solids. Furthermore, entirely novel behaviour is often seen in the close vicinity of quantum critical points. In this talk we will discuss the bilayer ruthenate metal $Sr_3Ru_2O_7$.

We will show evidence for the presence of a magnetic-field-tuned quantum critical point and discuss the nature of such a point. In addition, we will show the presence of unusual properties that become much more pronounced as the disorder level is reduced.

- 日時: 2003 年 11 月 14 日 (金) 午後 3 時~
- 場所:理学部1号館 化学教室第一会議室
- 講師: Professor Sankar Chakravorti
- 所属: Indian Association of the Cultivation of Science, INDIA
- 題目: Effect of hydrogen bonding on excited state charge transfer dynamics

要旨:

Since the observation of dual emission of 4-N,N,-dimethylaminobenzonitrle (DMABN) by Lippert et al and the subsequent explanation of dual emission in terms of Twisted Intramolecular Charge Transfer (TICT) and Locally excited state (LE) by Grabowski et al, lot of interested was generated in different laboratories investigating this molecule and also other molecules having a donor and acceptor moiety connected by essential single bond. Myriad of experimental and theoretical results on the ICT nature of DMABN have already been published. Though three different mechanisms viz, TICT, PICT and RICT have so far been proposed but the former one is popular. Whilst much work continue to concentrate on determining the structures of the LE and TICT states, the precise nature of the difference between the properties of the excited state in protic and aprotic solvents is little understood. For example, the fluorescence quantum yield of DMABN in protic solvents is lower and the fluorescence spectrum is further red shifted and broadened, relative to aprotic solvents of same polarity and the fluorescence decay kinetics are difficult to interpret. The present talk is addressed to this problem relating to our results on 4 N,N-dimethylaminocinnamaldehyde (DMACA) and also some other important results in this context.

日時: 2003年11月27日(木) 午後4時~

場所:理学研究科5号館 439号室

講師: Prof. E.V. Sampathkumaran

所属: Visiting Professor, ISSP, University of Tokyo, Tata Institute of Fundamental Research

題目: Magnetic anomalies and geometrical frustration effects in spin-chain oxides of the type, A₃MXO₆ 要旨:

We have been investigating a class of spin-chain compounds of the type A_3MXO_6 , derived from K_4CdCl_6 type rhombohedral structure, and found many interesting magnetic anomalies. All these results will be reviewed. Particular emphasis will be placed on Ca_3CoXO_6 (X = Rh, Ir and Co) serving as new examples for *spin-glass* behavior, that too of *an unusual type*, *among stoichiometric compounds due to geometrical frustration effects*. Creation of disorder by chemical substitution (say, by doping Mn for Co) restores long range magnetic ordering (exactly opposite to what has been known in magnetism till to date), as though the geometrical magnetic frustration is released by disorder.

日時:2003年12月5日(金) 午前10時30分~

場所:理学研究科5号館 519号室

講師: Dr. M. E. Zhitomirsky

所属: Theory Group, SPSMS/DRFMC, CEA-Grenoble, France

題目: Geometrically frustrated magnets in external field

要旨:

Applied field has dramatic effect on magnets with geometric frustration. We compare finite-field behavior of several frustrated magnets including classical Heisenberg antiferromagnets on kagome, garnet and pyrochlore lattices, and *XY* checker-board antiferromagnet. The thermal order by disorder effect stabilizes in these strongly frustrated magnets a number of unusual phases: states with triatic (third-rank tensor) order parameters at low and high magnetic fields and collinear spin-liquid states at one-third or one-half of the saturation.

The quantum order by disorder effect is examined for the high-field phase transition from the saturated state for the frustrated square lattice and the face centered cubic lattice antiferromagnets. In the fully saturated phase the magnon spectra for the two models have lines of minima. Transition into partially magnetized state is treated via a mapping to Bose condensation of single-flip magnons with anomalous dispersion. The asymptotic behavior of the magnetization curve differs significantly from that of conventional antiferromagnet in *d*-spatial dimensions.

We also examine the magnetothermodynamics of a number of frustrated magnets. The field induced adiabatic temperature change is significantly larger for such systems compared to ordinary non-frustrated magnets and also exceeds the cooling rate of an ideal paramagnet in a wide range of fields. An enhancement of the magnetocaloric effect is related to presence of a macroscopic number of soft modes in frustrated magnets below the saturation field. The obtained results suggest that frustrated magnets can be used as novel refrigerant materials in adiabatic demagnetization refrigerators. Analytical predictions are confirmed with extensive Monte Carlo simulations.

日時: 2003年12月10日(月) 午後16時分~

場所:理学研究科5号館 439号室

- 講師: Dr. Alexander Gabovich
- 所属: Institute of Physics of the National Academy of Sciences of Ukraine, Kiev, Ukraine
- 題目: Spin-dependent tunnel currents in junctions between ferromagnets and normal metals (superconductors) with charge-density waves

要旨:

A new experimental scheme to study a spin polarization P of ferromagnets is proposed. Specifically, normal or superconducting metals partially gapped by charge density waves (CDWs) are suggested as a probe of P while measuring dynamic conductivity G(V) of tunnel junctions between CDW metals and ferromagnets in external magnetic fields. Calculated G(V) are substantially different from those in the case of the superconductor-insulator-ferromagnet structures, being well-known probes of P. The existing variety of CDW substances with critical temperatures and energy gaps substantially exceeding their superconducting counterparts constitute an advantage of the proposed set-up.

日時: 2003年12月16日(火) 午後3時~

- 場所:理学研究科5号館 第4講義室
- 講師: Dr. Robin Perry
- 所属: International Innovation Center, Kyoto University
- 題目: Consequences of proximity to a metamagnetic quantum critical point
 - Anomalous behaviour in Sr₃Ru₂O₇ -

要旨:

Quantum criticality is currently generating large interest in the solid state physics community because of its potential to describe strongly correlated electron systems in a wide perspective. Novel electronic states of matter, for example unconventional superconductivity, have been observed close to quantum critical points. In this seminar, I present the latest data on the ultra-pure single-crystals of Sr₃Ru₂O₇, which is close to a metamagnetic quantum critical point. We observe dramatic and unexplained behaviour in the bulk properties close to the critical field; a broad peak in the resistivity that is bounded by first order phase transitions. This

anomalous behaviour is enhanced as the disorder level is decreased suggesting that it is intrinsically electronic in nature and not a consequence of impurities.

- 日時: 2003年12月17日(水) 午後4時~
- 場所:理学研究科5号館 439号室
- 講師: Christopher Bäuerle
- 所属: Low Temperature Research Laboratory, CRTBT-CNRS, BP 166, 38042 Grenoble Cedex 9, France
- 題目: Electron Coherence in Mesoscopic Kondo Wires 要旨:

The understanding of the ground state of an electron gas at zero temperature is one of the major challenges in Solid State Physics. For a long time it has been known that such a ground state is well described by Landau's theory of Fermi liquids [1]. In this description, the lifetime of quasiparticles is infinite at zero temperature, as the coupling to the environment tends to zero. Alternatively, in mesoscopic physics, one key physical concept is the phase coherence time, *i.e.* the time an electron can travel in a solid before it looses its phase coherence and thus its quantum, wave like behaviour. Such a decoherence is due to inelastic processes, like electron-phonon, electron-electron or electron-photon collisions. It has been shown by Altshuler and coworkers [2] that the phase coherence time diverges at zero temperature as electron-phonon, electron-electron and electron-photon interactions all go to zero at zero temperature. However, recent experiments on metallic as well as semiconductor wires suggest that the phase coherence time saturates at very low temperature [3]. Following this work, it has been argued that the observed saturation is indeed universal and intrinsic, and due to electron-electron interactions in the ground state of the Fermi liquid [4] which has sparked a relatively heavy debate in the mesoscopic community. More recent experiments invoke the coupling to magnetic impurities as a possible source of the frequently observed low temperature saturation of the phase coherence time [5-7]. In this talk we will review shortly recent experimental progress on the dephasing issue. In particular we will concentrate on the influence of magnetic impurities on the phase coherence time in mesoscopic quantum wires. We will show that the interactions between the magnetic impurities even in very dilute systems lead to a saturation of the phase coherence time at low temperatures [6] and are hence important for the issue of electron coherence in metallic conductors.

- [1] D. Pines and P. Nozières, The Theory of Quantum Liquids, W.A. Benjamin (1966).
- [2] B.L. Altshuler, A.G. Aronov and D.E. Khemelnitskii, J. Phys. C 15, 7367 (1982).
- [3] P. Mohanty, E.M.Q. Jariwala and R.A. Webb, Phys. Rev. Lett. 78, 3366 (1997).
- [4] D.S. Golubev and A.D. Zaikin, Phys. Rev. Lett. 81, 1074 (1998).
- [5] F. Pierre and N.O. Birge, Phys. Rev. Lett. 89, 206804 (2002).
- [6] F. Schopfer, C. Bäuerle, W. Rabaud and L. Saminadayar, Phys. Rev. Lett. 90, 056801 (2003).
- [7] A. Anthore, F. Pierre, H. Pothier and D. Esteve, Phys. Rev. Lett. 90, 076806 (2003).

日時: 2003年12月18日(木) 午後4時~

場所:低温物質科学研究センタ-2F 会議室

講師:上野 智弘 氏

所属:低温物質科学研究センタ-

題目:3重臨界点近傍でのHe3-4混合液体相分離界面の接触角の振る舞い

要旨:

京都大学において開発された超低温MRIにより, He3-4混合液体の相分離界面が像化された. その MRI画像により得られた相分離界面と壁とのなす角, "接触角"は, 低温での小さな値から, 3重臨界点近 傍に近づくにつれ, 大きくなるという温度依存性を示した. しかし, 解像度の不足により, 臨界点近傍 での測定値は, 測定値程度の誤差をもつものであったため, その振る舞いを決定できるに至らなかっ た. その後, パリ高等師範学校における光の干渉を用いた測定により, 0.81 Kから0.86 Kまで, 接触角 が有限であり, 温度とともに増加することが明らかになった. この温度依存性は, 一般に成立すると 信じられている"臨界濡れ現象"の例外にあたる. これは, 界面に働く長距離相互作用が存在すれば, 発生可能なものであり, He3-4混合液体においてはその相互作用が, 臨界カシミア効果によるものと説 明された. しかし, その説明において無視された短距離相互作用等が重要になるであろう0.86 Kから 臨界点(0.87 K) での接触角の振る舞いは明らかにされていない. この振る舞いを大きな磁場勾配と高 周波数を用いたMRI顕微鏡により, 明らかにできる可能性がある. 3重臨界点近傍における接触角の振 る舞いのもたらす物理と, その測定を可能とするMRI顕微鏡の技術について議論する.

日時:2001年1月6日(火) 午後4時~5時

場所:理学研究科5号館 439号室

講師:澤田 安樹 氏

所属:東北大学大学院理学研究科

題目: 複合フェルミオン間の相互作用

要旨:

量子ホール効果は、低温・強磁場下で2次元電子系のホール抵抗がマクロに量子化される特異な物 理現象である、量子ホール効果には、整数量子ホール効果と分数量子ホール効果が存在する、分数量 子ホール効果は、偶数本の磁束量子を電子に付着させた複合フェルミオンの整数量子ホール効果とし て理解できる、しかしこれまで複合フェルミオン間の相互作用は、相互作用を有効質量の中に繰り込 んだ一体近似で扱われ、あらわに相互作用を議論することはなかった、

そこで我々は、2層系 = 2/3分数量子ホール状態には、3種類の異なる量子ホール状態が存在する ことを実験で示し、総電子密度と電子密度差に関する相図を作成した、その結果、2種類の相境界の 存在から、有効質量に相互作用を繰り込むだけでは一体近似の描像が破綻し、電子と同程度のクーロ ン相互作用が複合フェルミオン間にも働いていなければ、相図を理解できないことを明らかにした、

参考文献: N. Kumada et al. Phys. Rev. Lett. 89, 116802 (2002).

日時: 2004年1月23日(金) 午前10時30分~

- 場所:理学研究科5号館 第4講義室
- 講師: Pr. Tae Won Noh
- 所属: School of Physics, Seoul National University, Korea
- 題目: Optical Investigation on Metal-Insulator Transitions (MIT) of Pyrochlore transition metal oxides.
- 要旨:

Using optical spectroscopy techniques, we investigated optical properties of some 4d transition metal oxides, including R_2 Mo₂O₇ (*R*=rare earth metals) and (Bi,Y)₂Ru₂O₇, which have interesting MITs. In spite of the extended nature of the 4d orbitals, we found that the electron-electron correlation could play important roles in the MITs. By comparing the optical responses with numerous Hubbard models, we will also discuss on the importance of orbital degeneracy and geometric frustration in the MITs observed in these pyrochlore compounds.

- 日時:2004年2月6日(金) 午後3時~
- 場所:理学研究科5号館 439号室
- 講師: Pr. Oscar BERNAL
- 所属: Visiting Associate Professor, International Innovation Center, Kyoto University, Associate Professor, Department of Physics and Astronomy, California State University, Los Angels
- 題目: Hidden Order/Disorder at Ambient Pressure Sampled by NMR in Powdered URu2Si2
- 要旨:

Below the hidden order transition temperature T_0 ~17K, ambient-pressure ²⁹Si and ⁹⁹Ru NMR spectra in an aligned powder of URu₂Si₂ reveal local internal field distributions at both ²⁹Si and ⁹⁹Ru sites. From temperature and applied-field orientation studies, we find that the internal fields are isotropic at the ²⁹Si sites, but anisotropic at ⁹⁹Ru positions, being larger in the *ab*-plane. The temperature dependence of the internal field distributions is found to be different for different field orientations also. While the ⁹⁹Ru spectra for a longitudinal field orientation display a minority ferromagnetic phase, this phase is not seen in the corresponding spectra for perpendicular geometry. The majority phase in the ⁹⁹Ru spectra also appears to change differently for different field orientations. We propose disorder in the non-magnetic sector as a way to understand our measurements and at the same time reconcile them with the occurrence of a transition to hidden order.

日時:2001年2月18日(水) 午後4時~

- 場所:理学研究科5号館 439号室
- 講師:松木 征史 氏

所属:京都大学化学研究所・原子核科学研究施設

題目:ダークマターアクシオン探索装置CARRACK:

リドベルグ原子を用いた低温でのマイクロ波単一光子検出

要旨:

宇宙におけるダークマターの正体の解明は素粒子物理・宇宙物理に関係する最重要な課題の一つで

あるが、素粒子アクシオンはその有力な候補である、アクシオンは強磁場中でマイクロ波光子に転換 されるが、転換される確率は極めて小さい、この為、転換されたマイクロ波光子を、低温下で個々に 検出する単一光子検出法が、アクシオン検出には有効である、高励起リドベルグ原子を用いて、低温 でマイクロ波単一光子検出を行う装置CARRACKを紹介する、この装置では、超電導磁石により発生し た強磁場下において、10mK領域に冷却されたマイクロ波共振空胴内でアクシオンを光子に転換し、転 換された光子をリドベルグ原子に吸収させて、フィールドイオン化の方法により検出する、装置の構 成、感度とその限界について述べる、

保安講習会報告†

Steering Committee Report "Security Seminar"

星野勉

京都大学大学院工学研究科

T. Hoshino Graduate School of Engineering, Kyoto University

平成15年度吉田キャンパスの京都大学保安講習会が,4月24日農学部大講義室,5月7日人間総合 学部E30教室,6月10日工学部土木総合館大講義室にていずれも午後4時半から6時まで行われた. 京都大学において,液化窒素ガスや液化ヘリウムガスなどの寒剤を使用する学生・教職員にたいして 毎年1回の受講が義務付けられているものである.高圧ガス保安法に定められている安全教育として のみならず,一人一人が寒剤を扱うエキスパートへの第一歩となるよう期待しているものである.保 安講習会は,法令の説明に始まり,取扱い上のヒヤリハットまでがガス会社から招いた専門の講師に よって説明された.第二部では,学内講師によって,吉田キャンパス利用の手引きに沿って液化窒素 ガスの汲み方,運搬方法,液化ヘリウムガスの申し込み方法などが説明された.また,クイズ形式の 質問も織り込んで,容器の取扱い方,低温やけどの危険性,酸欠状態になる液化窒素ガスの量の計算 方法が示された.その後,液化窒素ガスを用いた演示が行われた.また,後期には桂キャンパスにお いて,未受講者を対象に2回の追加講習会が行われた.合計1611名が受講したことになる.平成16 年1月30日には,京都市内の病院で極低温容器の爆発事故があったが,学内でそのような事故の起こ ることのないよう願い,次年度の担当者に引き継ぐ次第である.

保安講習会会場の様子 液化窒素ガス容器の取扱い方 平成15年度 高圧ガス保安講習会受講者数

部局等	第一回目	第二回目	第三回目	桂一回目	桂二回目	合 計
理学研究科・理学部	119	459	10			588
工学研究科・工学部	319	38	74	121	46	598
農学研究科・農学部	170	56	5			231
その他	61	114	19			194
受講者 合 計	669	667	108	121	46	1,611

+ 京都大学低温物質科学研究センター運営委員会,〒606-8502 京都市左京区北白川追分町

桂キャンパスの液体窒素供給システム[†]

Steering Committee Report "Liquid nitrogen supply system at Katsura Campus"

星野勉

京都大学大学院工学研究科

T. Hoshino Graduate School of Engineering, Kyoto University

京都大学の機関決定に従って,平成15年8月から工学研究科の一部(化学系専攻と電気系専攻)が 桂キャンパスに移転した.これまで,液化窒素ガス年間100kL,液化ヘリウムガス年間10kLの利用 者が移動したこととなる.教育研究環境を悪化させないという当初の約束と異なり,極低温寒剤供給 システムは,整備されなかった.そこで,工学部が液化窒素ガスの供給システムだけは手当てし,9 月から本格的に供給を開始した 汲出し制御や集計作業を計算機ベースにし,省力化をはかったので, その概要を解説する.

桂キャンパスは,オープンキャンパスとして設計されているので誰でも液化窒素供給装置にアクセ スできる.そこで,学生証,職員証,図書館利用証の磁気カードによって認証し,自動計量によって, 正味の汲出し量を記録できるようにした.利用者は,二系統ある汲出し口を選択し,利用者認証をし た後,画面の指示に従ってバーコードリーダで入力していくことで,汲出しをすることができる.認 証できなければ,液化窒素ガスは出ないようになっている.予め登録されている容器には,満タン充 填の指示だけで,容易に充填できる.定量充填されれば,供給停止するので,利用者は,容器を持ち 帰ればよい。さらに,ネットワークを介して,利用者データや容器データの共有が出来,複数の液化 窒素貯槽の汲出しデータを一括処理できる構成となっている,全国初のシステムである.

このシステムを運用するのに,利用者の63研究室に担当者を置き,利用者データの管理,研究室の 安全教育等を行っていただき,10名の保安組織で設備を維持し,14名の低温利用委員会で運営する形 態を取っている.システム自体は,立ち上げたばかりなので,改良しつつ使いやすくし,インフラ管 理部門に移管していく予定である.

充填作業画面

月別汲出量(2月まで)

† 京都大学低温物質科学研究センター運営委員会,〒606-8502 京都市左京区北白川追分町

宇治キャンパス公開 2003

10 月3日(金),4 日(土)の2 日間,今年で7 回目を迎える宇治キャンパス公開が催されました.当センターは宇治キャンパスで活動する11 番目の部局として,昨年よりパネル展示,公開ラボ に参加してきました.今年も2日目の13 時より一般・中学高校生を対象に,以下のようなプログラムで公開ラボ「簡単な低温実験(液体窒素 - 196 の世界)」を開催いたしました.

- 1.液体窒素は何度
- 2.-196 では何が凍る
- 3.液体窒素に触ってみよう
- 4.液体窒素にパイプをつけると
- 5.風船を液体窒素で冷やしてみると
- 6.気体で温度をはかる
- 7.液体窒素が凍る
- 8.液体酸素は何色
- 9.液体酸素は磁石につくか
- 10. 極低温で磁石につく金属
- 11. 超伝導体の浮上実験
- 12. フイルムケース・ロケット

各項目の詳細についての説明は来年来られる方の楽 しみのために割愛させていただきますが,低温実験の 定番に宇治キャンパスオリジナルを加え,1シリーズ 約45分のデモ実験を連続4回披露いたしました.延 べ150名以上の皆様に来ていただき,昨年以上に盛況 でした.大学の研究が細分化・専門化していく昨今, 誰にでも慣れ親しめる低温実験は,一般市民と最先端 研究のギャップを埋める意味でキャンパス公開に不可 欠な存在であると実感いたしました.来年の皆様の御 来場をお待ちしております.

低温物質科学研究センター・宇治キャンパス 化学研究所・極低温物性化学実験室

壬生 攻 楠田敏之

寒剤供給状況

吉田キャンパス

平成15年度

液体ヘリウム供給量

単位 ℓ

	4 月	5 月	6 月	7月	8月	9月	合 計
理学研究科·化学	1551	1462	1471	1002	1193	1650	8329
理学研究科・物理学第一	3228	4501	4219	3879	3181	3228	22236
理学研究科·生物科学	515	277	338	315	380	240	2065
理学研究科・地球惑星科学					100		100
人間・環境学研究科	60	130	334	1106	911	324	2865
総合人間学部	100	90		100		85	375
工学研究科・電気工学	100	100		100			300
工学研究科・材料工学	613	278	364	635	531	731	3152
工学研究科·合成·生物化学	102	35	74			62	273
工学研究科・分子工学	100						100
工学研究科・量子理工学	73	37	36	38	38	37	259
工学研究科・電子物性工学	559	452	417	460	416		2304
工学研究科・機械物理工学				50		49	99
工学研究科・材料化学	88	95	84	53			320
ベンチャー・ビジネス・ラボラトリー	60	60	100	60		60	340
農学研究科	75		100		59	43	277
エネルギー科学研究科	75	52	126	192	190	176	811
合計	7299	7569	7663	7990	6999	6685	44205

平成15年度

液体窒素供給量

単位 ℓ

	4 月	5 月	6 月	7 月	8 月	9 月	合 計
理学研究科・化学	5104	4647	5426	3772	4152	6155	29256
理学研究科・物理学第一	1701	1682	2297	1839	1647	2117	11283
理学研究科・物理学第二			160	50	17	42	269
理学研究科・その他	1904	1546	1935	1369	1707	1530	9991
人間・環境学研究科	410	442	800	1115	970	790	4527
総合人間学部	115	180	215	225	275	150	1160
工学研究科	5290	5120	4735	3610	1960	1330	22045
農学研究科	2540	2070	2503	2712	2401	3109	15335
エネルギー科学研究科	120	120	50	150	85	130	655
総合博物館				5	10	20	35
医学研究科	209	180	146	185	248	130	1098
医学部附属病院	820	582	663	653	694	910	4322
保健診療所		10	20	10	10	20	70
生命科学研究科	781	711	917	727	668	786	4590
情報学研究科	10	20	40	30	20	10	130
地球環境学堂・学舎	10						10
各種センター合計	540	562	745	427	500	710	3484
各種研究所合計	2701	1747	1900	1888	1990	2209	12435
금 計	22255	19619	22552	18767	17354	20148	120695

宇治キャンパス

平成15年度

液体ヘリウム供給量

単位 ℓ

	4 月	5 月	6月	7 月	8 月	9月	合計
化学研究所	1595.7	1520.5	2319.1	1365.2	1228.6	1543.0	9572.1
エネルギー理工学研究所		104.1					104.1
木質科学研究所							
農学研究科						-	
理学研究科							
工学研究科			7.9				7.9
エネルギー科学研究科		799.4	866.1	972.6	890.4	13.0	3541.5
低温物質科学研究センター	118.6	123.55	54.6	157.4	64.3	72.7	591.1
その他		35.1	67.6		69.5		172.2
合 計	1714.3	2582.5	3315.3	2495.2	2252.8	1628.7	13988.9

平成15年度

液体窒素供給量

単位 ℓ

	4 月	5月	6 月	7 月	8 月	9月	合 計
化学研究所	5289.9	5327.3	5982.6	5395.5	4144.7	4051.4	30191.4
エネルギー理工学研究所	517.0	679.5	461.9	569.2	416.8	601.4	3245.8
木質科学研究所	385.9	195.8	461.4	433.6	295.4	442.6	2214.7
農学研究科	193.1	209.4	199.8	150.1	167.6	210.2	1130.2
防災研究所	31.3	42.0	33.2	33.1	41.7	33.3	214.6
理学研究科							
工学研究科	198.6	245.9	437.1	503.6	400.4	230.5	2016.1
エネルギー科学研究科	799.7	284.5	963.4	946.8	1405.3	113.0	4512.7
低温物質科学研究センター	139.5	71.6	173.35	184.0	92.9		661.3
その他	7.8	16.7	11.2	11.3	2.0	10.8	59.8
合 計	7562.8	7072.7	8723.8	8227.2	6966.8	5693.2	44246.6

「京都大学低温物質科学研究センター誌 (LTM センター誌)」への投稿の お誘い並びに原稿の作成要領

Call for Manuscripts for "Low Temperature and Materials Sciences (Kyoto University)"

水崎隆雄^{1,2}, 編集委員会²

¹京都大学大学院理学研究科,²京都大学低温物質科学研究センター Takao Mizusaki^{1,2} and Editorial Committee² ¹Graduate School of Science, Kyoto University, ²Research Center for Materials Sciences, Kyoto University

1. はじめに

「京都大学低温物質科学研究センター誌(通称:LTM センター誌,英文名:Low Temperature and Materials Sciences (Kyoto University))では,低温物質科学研究センターが提供する寒剤・共通機器の利用者の皆様や関係者の皆様より「研究ノート」,「技術ノート」,「サロン」への投稿を歓迎いたします. 投稿されました原稿は,編集委員会で審議のうえ掲載の可否を決定いたします.投稿にあたっては, 印刷原稿に電子ファイルを添えて,下記+宛に郵送または持参いただきますようお願いいたします. 初校刷りは電子ファイルより作成しますので,以下第2章を御参考のうえ可能なかぎり MS-Word を用いてカメラレディー的に作成してください.なお,編集委員会からの原稿依頼も行いますので,依頼 させていただいた際にはよろしくお願い申し上げます.

2. 原稿の作成要領

A4 用紙の上下左右に 25 mm ずつマージンをとって,和文表題,英文表題,和文著者・所属,英文 著者・所属,本文,参考文献の順に記述してください.本文は1行あたり全角45文字,1ページあた り40行を基準にしてください.漢字・かな・カナには MS 明朝,英字・数字には Times New Roman, 本文中の見出しには MS ゴシック(またはこれらに準じる書体)を使用してください 表題は14 point, 著者・所属は12 point,本文は10.5 point,図・表のキャプションは10 point の文字を用いてください. 表題の前に空行を3行入れてください.本文中,物理記号を表す記号は斜体(イタリック),単位記号 は立体(ローマン)で表記し,物理量と単位の間や数字と記号の間にはスペースを1個入れてください い.また,章の間にもスペースを1行設けてください.参考文献の引用スタイルは各分野の慣習に従っていただいて結構です.句読点は「.,」に統一してください.図は本文中に貼り付けてください. 一旦印画紙に落としますので,高解像度のものを使用してください.印刷原稿の右下に鉛筆でページ 番号を振ってください.その他の細部については,本稿ならびに下記 Ref. [1,2] のスタイルを参考に してください.多数の投稿をお待ちしております.

参考文献

- [1] 水崎隆雄, 京都大学低温物質科学研究センター誌 1, xxx (2003).
- [2] K. Mibu, Low Temperature and Materials Sciences (Kyoto University) 1, xxx (2003).
- + 京都大学低温物質科学研究センター編集委員会,〒606-8502 京都市左京区北白川追分町, TEL&FAX: 075-753-4057, E-mail: shibata@rigaku.kyoto-u.ac.jp.

「学術雑誌の編集は後世にまで名前が残るやり甲斐のある雑用(?)だ」という甘い言葉に乗せられ て某学会誌の編集に関わって4年余り.それに味をしめた訳ではありませんが,新しいセンター誌の 編集委員をお引き受けし,宇治キャンパス代表として微力ながら当誌の編集に携わって参りました.

前野委員長を中心に,「極低温月報」からの脱却を図り,サイズのA4化,表紙デザインの一新,査 読の充実などの改革を行って参りました.執筆いただいた記事を英文業績リストの末行に加えていた だけるように,英語の雑誌名と英文の目次も加えました.

ここにようやく第3号の発行を迎えることができましたが,今後ますます当誌への寄稿が活発になり,創刊時の編集委員の名声が後世にまで残っていくことを,ひそかに期待しています.

K. M.

京都大学 低温物質科学研究センター誌
Low Temperature Materials Sciences
(Kyoto University)
第3号 2004 年 2 月 Volume 3, February 2004
編集委員会:前野 悦輝(編集委員長),水崎 隆雄,
鈴木 実,壬生 攻,吉村 一良,
和田 裕文,小山田 明,北所 健悟
事務局:〒606-8502京都市左京区北白川追分町
京都大学 低温物質科学研究センター
TEL&FAX: 075-753-4057
E-mail: <u>shibata@rigaku.kyoto-u.ac.jp</u> (柴田晶子)
印刷:糺書房